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ABSTRACT
Malware is one of the key threats to online security today, with
applications ranging from phishing mailers to ransomware and
trojans. Due to the sheer size and variety of the malware threat, it is
impractical to combat it as a whole. Instead, governments and com-
panies have instituted teams dedicated to identifying, prioritizing,
and removing specific malware families that directly affect their
population or business model. The identification and prioritization
of the most disconcerting malware families (known as malware
hunting) is a time-consuming activity, accounting for more than
20% of the work hours of a typical threat intelligence researcher,
according to our survey. To save this precious resource and amplify
the team’s impact on users’ online safety we present Spotlight,
a large-scale malware lead-generation framework. Spotlight first
sifts through a large malware data set to remove known malware
families, based on first and third-party threat intelligence. It then
clusters the remaining malware into potentially-undiscovered fam-
ilies, and prioritizes them for further investigation using a score
based on their potential business impact.

We evaluate Spotlight on 67M malware samples, to show that it
can produce top-priority clusters with over 99% purity (i.e., homo-
geneity), which is higher than simpler approaches and prior work.
To showcase Spotlight’s effectiveness, we apply it to ad-fraud mal-
ware hunting on real-world data. Using Spotlight’s output, threat
intelligence researchers were able to quickly identify three large
botnets that perform ad fraud.

CCS CONCEPTS
• Security and privacy→Malware and its mitigation.

KEYWORDS
Malware hunting, Malware classification, Malware clustering, Mal-
ware prioritization
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1 INTRODUCTION
As the sophistication of anti-malware defenses keeps increasing
with each passing year, malware authors have been improving their
malware generation pipelines to reduce their detection surface. To
do so, they have introduced techniques that make every binary
unique, such as obfuscation, packing, polymorphism, and meta-
morphism. These techniques have become so commonplace in the
malware industry that over one billion unique malware samples
have been identified in 2019 by AV-Test [2], an increase of over
1500% since 2011.

The sheer number of malware samples being produced every day
has made the threat researchers’ choice of which sample to investi-
gate, the malware hunter dilemma, even more crucial. Researchers
face a trade-off as they invest a scarce resource, their limited time,
for the potential payoff of identifying a malware family that is
(1) novel and (2) relevant to their team’s mission. Unfortunately,
this choice is often difficult as researchers have limited a priori
information about the malware they face, and a sample chosen at
random will likely be a variation of known malware families and
thus ultimately of little novelty. Investigating such a sample is a
bad payoff for their time as it produces little tangible benefit to
their team’s mission. On the other hand, finding novel malware
is not sufficient; its investigation also needs to have a significant
impact on their stakeholders. For example, a bank’s threat intel-
ligence team may only be interested in malware that targets the
bank’s clients; an advertising company focuses on ad fraud; a cloud
storage company wants to root out instances of ransomware, etc.
Relying solely on AV labels for malware hunting is challenging as
they are often inconsistent, generic and there is no single naming
convention for malware specimens. [14]

This paper aims to improve a researcher’s odds against the mal-
ware hunter dilemma. Specifically, we propose Spotlight, a frame-
work to identify and prioritize major unknown threats that affect
a business so to maximize the researcher’s return on investment.
Spotlight is designed to operate at scale, processing tens of millions

https://doi.org/10.1145/3427228.3427273
https://doi.org/10.1145/3427228.3427273


ACSAC 2020, December 7–11, 2020, Austin, USA Kaczmarczyck et al.

of malware samples using limited computing resources. Spotlight
first leverages a continuously-trained machine learning model to
sift through malware to separate samples that belong to known fam-
ilies from malware that does not. The unknown malware samples
are further clustered based on their semantic similarity to iden-
tify potential families, and each cluster is then prioritized with an
application-specific scorer to quantify the cost to the business and
thereby identify the top clusters that should yield the best payoff
from a manual investigation.

An application-specific scorer is inherently dependent on the
team’s mission; for example, given clusters of potentially-damaging
malware, a bank may want to dynamically execute a few samples
per cluster to see whether they target the bank’s online presence
or the honeypot’s user credentials for the bank, whereas a botnet
fighting team would prioritize clusters which have the largest vic-
tim base. In this paper, we present a use case where Spotlight is
configured to surface ad fraud, using a scorer that dynamically
executes samples to collect evidence of ad fraud through network
traffic signatures and honeypot signals. To illustrate Spotlight’s use-
fulness in our use case, we evaluate it on a data set of 67M malware
samples to identify three ad fraud botnets. To our knowledge, this
data set is the largest to date ever to be used on a malware family
classification or clustering task, exceeding prior work [13] by one
order of magnitude.

Our contributions are summarized as the following:

• We present Spotlight, a system that identifies and prioritizes
unknown malware families that are relevant to a threat-
intelligence team’s mission, thus making malware hunting
less time consuming. Similar to active learning, Spotlight’
feedback loop uses investigation results to improve its re-
sults.

• We evaluate Spotlight on a 67M malware data set to show
that it outperforms previous work on malware family classi-
fiers, and it identifies the malware family as unknown with
a 0.9994 precision and 0.992 recall.

• We apply Spotlight to a malware hunting use case for an
ad company to identify three large ad fraud botnets, one of
which were not detected on VirusTotal.

2 MOTIVATION
Malware hunting is known to be a time-intensive yet critical ac-
tivity in the cybersecurity industry. This topic is often debated in
security news sources (e.g., [8, 9, 11]), and companies are offering
it as a business-to-business service (e.g., CrowdStrike [6], Carbon
Black [5]).

We conducted a qualitative survey in May 2020 to verify that
malware hunting is indeed essential and time consuming. We sub-
mitted this survey to 37 malware experts, working in eight indepen-
dent teams of a single top-100 company per market capitalization.
Each of these teams work on a specific facet of threat intelligence,
ranging from securing browsers, to mobile devices, ads, and cloud
computing.

The responses for this survey, shown in Table 1 and 2, suggest
that malware hunting is a critical activity (very or extremely im-
portant for 90% of the respondents) that often incurs a significant
time investment (>20% of work time for 70% of respondents). We

Table 1: Survey results for question 1: “How important is lead
generation (i.e., malware hunting) in your current position?”

Response Response count Response ratio

Not important (1/5) 1 5%
Mildly important (2/5) 0 0%
Important (3/5) 1 5%
Very important (4/5) 8 38%
Extremely important (5/5) 11 52%

Survey not completed 18 N/A

Table 2: Survey results for question 2: “How much of your
working time did you spend on lead generation related tasks
during the last 6 months (Dec 2019-May 2020)?”

Response Response count Response ratio

0% ≤ t < 20% 5 24%
20% ≤ t < 40% 10 48%
40% ≤ t < 60% 3 14%
60% ≤ t < 80% 2 10%
80% ≤ t ≤ 100% 1 5%

Survey not completed 18 N/A

note that we only claim this survey to be qualitative due to its sam-
ple size, non-response bias, and sampling bias. Nonetheless, this
result is in agreement with the general sentiment of the industry,
and further highlights the need for better tooling to automate the
hunting.

3 SYSTEM OVERVIEW
We now describe Spotlight’s overall structure, as shown in Figure 1,
to then provide additional details in the following sections.

Goal. Spotlight’s goal is to make malware hunting more efficient
by automatically identifying and prioritizing malware families that
have yet to be reverse engineered (unknown malware) and that are
in scope with the threat intelligence team mission, be it to defend
a bank, online advertising, a government entity, or other business.
We aim to achieve this goal without relying solely on AV labels
due to their inconsistencies, generic names and lack of a common
naming convention [14].

Processing steps. Spotlight’s input is exclusively malware. We
note that Spotlight’s goal is not to distinguish malware from benign
binaries; instead, it is meant to run on the cumulative knowledge
that other malware-analysis systems have collected about each
malware sample. Known malware may be interesting, e.g., to assess
its impact by reverse engineering it.

Eachmalware sample is first encoded in a vector of input features,
as described in Section 3.1. It is then processed by a deep-learning
classifier that labels the sample as belonging to one of the malware
families that have been previously studied by the team, or marks it
with the “unknown malware” label (details in Section 3.2). In our
operational setting, the samples attributed to a known family will
be passed on to malware family tracking systems, which provide
statistics on the prevalence of each malware family based on teleme-
try not in scope for this paper. The main output of this first step is
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Figure 1: Overview of our framework.

a malware embedding, computed by the classifier, that represents
the malware in a compact form, reducing the large initial feature
space to 32 floating point numbers.

Samples classified as unknown malware are passed on to a clus-
tering component, which groups malware into clusters based on
the embedding vectors generated by the classifier (see Section 3.3).
Finally, an application-specific scorer takes in all the clusters and
ranks them by giving them a priority that reflects the threat intelli-
gence team’s mission (details in Section 3.4).

Finally, a threat intelligence researcher manually investigates a
subset of the top-priority clusters and takes appropriate action. The
researcher also optionally develops new static or dynamic signa-
tures to detect the malware, which are added to the input features
described in the next section. The researcher can also attribute
a name to a new malware family, in which case Spotlight adds a
corresponding output to the known-malware-family classifier.

Hence, Spotlight removes samples from this now knownmalware
family in the classification step on the next run. The classifier drives
the reduction of the number of unknown malware samples. Also,
more relevant features can improve embedding representations and
allow better clustering results on later iterations.

3.1 Input Features
Spotlight hunts for novel malware families by leveraging the ac-
cumulated intelligence extracted by automated malware detectors,
such as malware analysis sandboxes, or antivirus software.

Specifically, each sample is represented by a sparse vector of
metadata extracted by those detectors, including 1) features from
static analysis, 2) features from dynamic analysis, and 3) antivirus
verdicts. Combining those 3 feature sets allows us to leverage the
individual benefits of each approach. We obtain antivirus verdicts
through VirusTotal to simulate an operational setting in which the
threat intelligence team has access to antivirus verdicts through
service contracts with antivirus companies or by running static
scanners and honeypots. The raw labels obtained from antivirus
engines, before the preprocessing described below, look like this:
Spyware.Banker.Dridex, Packed.Generic.525.

We note that some of the features we use come from non-public
analysis platforms, whose implementation details we cannot share
as this would give a tangible advantage to malware authors. In the
spirit of open science, we also run Spotlight exclusively on publicly
available VirusTotal labels in section 4.6, so that our results can
be replicated. We believe that including the performance of the

full framework (including the proprietary features) gives a more
comprehensive view of what is achievable with this system.

We further refine the 212,361 (211,246 + 1,115) one-hot-encoded
categorical features by normalizing their names through standard
text preprocessing (tokenization, lowercasing, removal of common
delimiters, deduplication) and discarding overly prevalent (over
20% of the data set matches the feature) or extremely rare features
(10−5% of the data set - in our case, a max of 100 hits for the feature).
This shrinks our sparse feature space nearly in half, resulting in
121,947 final input features.

3.2 Known-Family Classification
As shown in Figure 1, Spotlight first processes all input malware
through a deep-learning classifier to identify malware families that
have already been identified by the threat intelligence team. The
output of this step is twofold: known malware gets attributed to
the correct malware family, whereas the rest of the malware is
associated with a compact embedding comprising 32 floats, which
will be passed on to the clustering stage.

Motivation. This compact embedding has the dual benefit of 1)
reducing the compute and memory requirements of the subsequent
clustering, as the points to be clustered are of modest dimensional-
ity (see Section 4.4), and 2) substantially improving the quality of
Spotlight’s output clusters (see Section 4.7). Intuitively, this fam-
ily classifier acts both as a filter to sift out malware belonging to
known families, and as a preprocessor that discards irrelevant input
features, and projects the relevant ones into an embedding space
that places semantically-similar samples (that is, belonging to the
same family) close to each other and away from other families.
This learned separation eases the job of the subsequent clustering
step as testified by the boost in performance in our experiments
in Section 4.7. Effectively, this classification step gives threat re-
searchers a way to train Spotlight to semantically recognize what
they consider to be malware belonging to different families, and
complete the training feedback loop of the pipeline.

Structure. We detail the internal structure of the malware fam-
ily classifier, a multilayer perceptron, in Figure 2. Specifically, the
sparse one-hot-encoded categorical inputs are first bucketed via
hash buckets to reduce their dimensions and increase density, as
per standard practice when using sparse inputs to deep-learning
classifiers. Then, they pass through a series of dense layers to fi-
nally produce the family classification. As part of this process, an
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Table 3: Overview of input feature categories. Note that a single malware can match many features, thus ratios do not add up to 100%.

Internally authored signatures VirusTotal signatures

Feature categories Description
Feature count

(ratio)
Hits on malware
data set (ratio)

Feature count
(ratio)

Hits on malware
data set (ratio)

Adware Ad fraud, such as click fraud 5 (0.4%) 198,701 (0.3%) 4,263 (2.6%) 6,911,927 (1.5%)
Crypto Informational crypto-detection signatures, e.g. AES s-boxes,

public and private keys
57 (5.1%) 7,895,063 (12.5%) 0 (0%) 0 (0%)

Dropper Dropper or backdoor capabilities 18 (1.6%) 302,095 (0.5%) 14,165 (6.7%) 43,417,909 (6.5%)
Exploit Known exploits, shellcode and CVEs 29 (2.6%) 568,034 (0.9%) 195 (0.1%) 709,677 (0.2%)
Family Specific malware families, e.g. WannaCry, Mirai 241 (21.7%) 3,459,410 (5.5%) 7,120 (4.4%) 43,891,534 (9.3%)
Generic Generic malicious behavior and heuristics 0 (0%) 0 (0%) 50,209 (31.2%) 169,884,389 (36.2%)
Info Purely informational features, e.g. file type, compiler used 105 (9.4%) 14,184,790 (22.5%) 0 (0%) 0 (0%)
Info stealer Info stealing behavior, e.g. banking trojans or keyloggers 19 (1.7%) 3,234,751 (5.1%) 3,644 (1.7%) 12,597,007 (1.9%)
Meta Meta-signatures, i.e. signatures derived from the presence

of groups of other signatures
151 (13.6%) 2,500,791 (4%) 0 (0%) 0 (0%)

Miner Cryptocurrency mining detection 19 (1.7%) 324,760 (0.5%) 910 (0.6%) 7,087,959 (1.5%)
Packer Packers, obfuscators, cryptors 26 (2.3%) 3,297,566 (5.2%) 955 (0.6%) 3,042,416 (0.6%)
Ransom Ransomware routines 8 (0.7%) 287,271 (0.5%) 3,557 (2.2%) 22,743,700 (4.8%)
Suspicious Suspicious but not malicious behaviour, e.g. VM and debug-

ger checks, disable OS features
36 (3.2%) 12,230,903 (19.4%) 794 (0.4%) 3,824,586 (0.6%)

Trojan Malicious software disguising as legitimate 30 (2.7%) 63,653 (0.1%) 62,818 (39.0%) 170,446,401 (36.3%)
Unwanted PUP (potentially unwanted programs), which are not mali-

cious per se
128 (11.5%) 2,661,163 (4.2%) 632 (0.4%) 961,310 (0.2%)

Worm Malware spreading via worm-like techniques 0 (0%) 0 (0%) 7,448 (4.6%) 32,111,647 (6.8%)

Other Any signatures not fitting in any other category 243 (21.8%) 11,943,016 (18.9%) 54,536 (25.8%) 153,717,390 (22.9%)

Total 1,115 63,151,967 211,246 671,347,852
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Figure 2: Architecture of the known-malware-family classifier

embedding is computed at the most dimension-constrained section
of the neural network.

The output of the classifier comprises nf +1 floats corresponding
to the likelihood of the malware being part of one of the nf families,
or of an “unknown malware” category.

This classifier, implemented in TensorFlow [1], is trained in a
fully-supervised fashion on a training set, as detailed in Section 4.1.
To account for the class imbalance among the malware families, we
use a weighted cross-entropy loss where the weights are inversely
proportional to the family prevalence in the data set. By doing so,
the classifier will be penalized more for a classification error on a
malware sample belonging to a rarer malware family. We evaluate
the performance of this classifier in Section 4.3.3

The various parameters of the classifier have been chosen via
hyperparameter tuning on a similar data set. The data set for hy-
perparameter tuning was collected three months prior to the one
we describe in our experiment. Details of the tuning are available
in Section 4.3.

3.3 Unknown Malware Clustering
As shown in Figure 1, Spotlight performs clustering on all embed-
dings of malware binaries that have been classified as unknown.
Specifically, we perform a highly parallel version of hierarchical
agglomerative clustering [16], which has been recently given the-
oretical support on its ability to produce quality clusters [15]. We
use Euclidean distance in the embedding space.
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This clustering algorithm requires the setting of a parameter,
ε , a distance threshold dictating when to cut the tree of clusters
(i.e., when to stop creating smaller and smaller subclusters). As this
choice depends on the semantics of what constitutes a malware
family, ε was set manually by the threat intelligence team (details
in Section 4.3.1). Higher values of ε generate fewer, larger clusters,
whereas smaller values yield more, smaller clusters.

The astute reader will note that we could have applied clustering
on the input malware sparse features directly. We have indeed
attempted to do so, but the cluster quality was subpar due to the
sparsity and noise of the features. Furthermore, the operational
requirements to run our clustering tool on the larger input data
were more demanding. We provide an empirical analysis of this
option in Section 4.7.

Preclustering. To speed up clustering, as it is the most resource-
intensive component of Spotlight (see details in Section 4.4), we
first precluster embeddings which are very similar to each other,
i.e. remove near duplicates. These embeddings typically consist of
near duplicates due to polymorphic malware. To precluster them,
we reduce the numerical precision of the embeddings by rounding
each coordinate to 4 digits in its decimal representation. All samples
that are represented by the same quantized embedding are then
marked as belonging to the same precluster. These preclusters are
then fed to the clustering system.

3.4 Prioritization
As shown in Figure 1, the clusters are then scored by an application-
specific scorer which ranks clusters according to their business im-
pact, and then passes the top ranking ones on to threat researchers
for analysis. Those application-specific scorers are highly use-case
dependant and have to be customized according to the specific
scenario.

This component’s inner workings depend on what the threat
intelligence team is looking for. In our ad fraud context, for example,
the scorer selects samples in each cluster and executes them in a
honeypot that attempts to elicit the ad fraud behavior from the
malware by simulating a user browsing the internet. In a banking
application, instead, a reasonable approach is having the honeypot
synthetic user sign into the bank site, in order to elicit a potential
credential harvesting component of the malware under analysis. If
dynamic analysis is to costly, one can also use static scorers only
instead, e.g. searching for suspicious strings within the binaries. If
the application is instead to take down the largest botnets by victim
population size, a simple size estimator based on DNS lookup logs
would be appropriate as scorer.

Ultimately, the application specific scorers act as a scoring func-
tion to sort clusters based on their relevance. Therefore, their im-
plementation strongly depend on the specific use-case and goal,
and have to be adopted accordingly.

In this paper, we use two scorers: a simple botnet-size scorer,
meant to discover the larger malware families by simply giving
higher scores to larger clusters, and an ad fraud scorer, described
below and put to the test in a case study in Section 5.

Ad fraud scorer. This sub-section describes an application-spe-
cific scorer we used to hunt for ad-fraud malware. This is one way

to do it, however one can use different techniques to hunt for ad-
fraud, e.g. only rely on static analysis, target very specific forms of
ad-fraud, etc.

Our scorer operates as follows. First it executes Yara signatures
on unpacked samples. The Yara signatures check for suspicious
strings, URLs and API calls. Afterwards, it executes every sample
having at least 1 Yara signature hit in a high-interaction Windows
honeypot and we monitor its network behavior to find evidence of
ad fraud.

Afterwards we compute a fraud score for each sample, which
represents the share of signals triggered by this sample during
static or dynamic analysis, e.g. 2 hits and 8 negative signals would
result in a fraud score of 0.2 (2 / 10). The clusters’ fraud score is the
average of the samples’ fraud score in the same cluster - the higher
this score, the more relevant the cluster and the higher its rank for
malware analysts to investigate.

This is just one example how to hunt for ad-fraud malware. If
dynamic analysis is too costly, one can also replace it by static
analysis only, e.g. searching for suspicious strings or library calls.

3.5 Investigation and Feedback
Finally, threat intelligence researchers investigate the top rank-
ing clusters provided by the scorer. The methodology that the re-
searchers use to investigate clusters is their standard operating
procedure, unchanged with the arrival of Spotlight, and it is not
in scope of this paper. For each inspected cluster, researchers can
optionally create new signatures and, if a novel family has been
found, assign a new label to it. These new signatures and labels are
taken into account in future iterations of the feedback loop.

4 EVALUATION
We claim that Spotlight can produce quality clusters of unknown
malware, where “quality” indicates that the clusters have have high
purity (as defined in Section 4.2) and business impact. These two
factors are our key metrics as, when combined, they can scale a
threat intelligence team impact. On the other hand, impure clusters
would effectively be as useless as low-impact clusters, as no gener-
alized conclusion about a cluster can be drawn by analyzing a few
samples. While high completeness (meaning, a malware family is
not split into too many clusters) is desirable, it is not critical to the
mission. In this section, we show how Spotlight performs on a large
(67M) data set of malware samples, and how its performance and
computational cost is affected in a variety of deployment contexts.
Then, we configure Spotlight to hunt for ad fraud malware, and we
describe a case study where we identify three large ad fraud botnets.
Table 4 provides an overview of the experiments we conducted.

4.1 Data sets
We produce a train/test data set pair of malware samples, which
for brevity we call our training data set of 11.8M malware samples.
1.8M of which included a family label, from 26 malware families.
We assigned to the remaining 10M samples the unknown family
label. The set is split 80/20 for training and testing. The malware
samples were collected between March 2018 and March 2020.

The distribution of malware families in the training data set are
outlined in Table 5. We note that no benign samples are part of this
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Table 4: Experiments overview.

Experiment Data set Section
Training Hunting

Cluster quality and hyperparameter sen-
sitivity

✓ 4.3.1

Spotlight’s workflow effectiveness ✓ 4.3.2
Family classification performance ✓ 4.3.3
Resource consumption ✓ ✓ 4.4
Manually investigating cluster quality ✓ ✓ 4.5
Removing proprietary malware features ✓ ✓ 4.6
Benefit provided by the malware embed-
ding step

✓ 4.7

Case study on hunting real-world ad
fraud botnets

✓ ✓ 5

Table 5: Malware families used in the training set.

Malware family Description Training set ratio

Pony Dropper and info stealer 28.5%
Shylock Banking trojan 25.6%
Asprox Dropper and spambot 17.9%
Lethic Dropper and spambot 9.4%
Tinba Banking trojan 4.6%
WannaCry Ransomware 3.9%
Simda Dropper and info stealer 3.2%
Nymaim Ransomware and dropper 2.2%
Buterat Trojan 2.0%
PlugX Backdoor and info stealer 0.8%
Tofsee Spambot 0.7%
Necurs Dropper 0.6%
QakBot Banking trojan and dropper 0.4%
DreamBot Banking trojan and dropper 0.10%
Shifu Banking trojan and dropper 0.05%
Sinowal Banking trojan 0.04%
Geodo Banking trojan 0.03%
EvilGrab Credential harvesting 0.02%
Kronos Banking trojan 0.02%
Elise Dropper 0.01%
WannaCryWorm Ransomware (worm variant) 0.01%
Cobian Dropper 0.01%
Corebot Banking trojan 0.01%
Cutwail Dropper and spambot 0.003%
Slave Banking trojan 0.001%
Total 100%

(or any) data sets, as Spotlight operates exclusively on malware. All
malware in our data sets targets Windows. The malware family
labels are based on a combination of in-house and external [17]
signatures.

The training data set is built to mimic the distribution of la-
beled/unlabeled samples we find in practice. The same is valid for
family distributions.

On the same day, we also collect a larger hunting data set, com-
prising 67M malware samples.

4.2 Performance Metrics
As the final output that Spotlight produces is a ranked list of mal-
ware clusters, we choose to measure Spotlight’s effectiveness with
well-established metrics: homogeneity and completeness, which
combine to form the single metric v-measure [18] as their harmonic
mean. Spotlight’s goal is to provide high-purity (i.e., high homo-
geneity) top-ranked clusters. On the other hand, high completeness
is a secondary objective, as a malware family can be broken into
a reasonable number of clusters without overly affecting a threat
intelligence researcher’s job, especially because the hierarchical
nature of our clustering helps tie these related clusters together.

4.3 Pipeline Performance
In this section, we conduct a series of experiments to evaluate
Spotlight’s effectiveness in producing high-quality clusters, and its
sensitivity to hyperparameter variations.

In these controlled experiments, we use the training data set and
exclude all unlabeled malware. This allows us to precisely measure
Spotlight’s performance, as we exclude the malware for which we
do not have a family attribution. Instead, in each experiment we
select some families and strip their labels from the corresponding
samples, to later check if Spotlight correctly grouped this unla-
beled malware into disjoint clusters. This provides ground truth to
evaluate cluster quality.

4.3.1 Embedding quality and hyperparameter sensitivity. In this
first experiment we evaluate Spotlight’s performance when two
key parameters change: the number of labeled families, and ε . This
allows us to see how Spotlight’s output is affected by the man-
ual choice of its hyperparameter ε (see Section 3.2), and whether
the pipeline benefits from being aware of more malware families
during its training, thus potentially producing more expressive
embeddings.

Experimental setting. To perform this experiment, we ran-
domly choose half of the 26malware families for our training set and
the remaining half for the test set. We then create multiple test con-
figurations, each of which picks a value for ε ∈ [0.03, 0.13, 0.3, 3.0]
and a number of known malware families ñf ∈ [1, 2, ..., 13] (13
being half of the families), for a total of 52 (4 · 13) configurations.

We train and test each configuration by setting the ε value and
revealing to the classifier only the firstnf family labels, whereas the
samples for the remaining 13− ñf are labeled as unknown malware.
In doing so, we can measure how Spotlight performance varies
when the number of labeled malware families increases, which is
expected when the threat intelligence team identifies more families.

Embedding quality.We show the result of this experiment in
Figure 3 and Figure 4. We note that Spotlight produces high-purity
clusters when having access to the label of five or more families.
We stress that the families that the classifier has seen during the
training phase are not the ones that the classifier is processing
during the evaluation phase, making this the worst-case scenario to
evaluate the pipeline performance. Having high-purity clusters is
fundamental for threat intelligence researchers, as it allows them to
only investigate one sample of a cluster in order to draw conclusions
for the behavior of all samples in the cluster.
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The scale of this conclusion is instead dictated by completeness
(or v-measure, which is a combination of completeness and ho-
mogeneity), which measures the fragmentation of a family into
multiple clusters. Whereas low values of completeness are unde-
sirable since they indicate that each sample is clustered by itself,
mid to low values of completeness (0.1-0.5) are acceptable as they
indicate that a family is split across a reasonable number of clus-
ters (tens to hundreds). This is expected, as different strains and
evolutions of the same malware families are clustered separately
and allow researchers to quickly identify variants.

As an example, we show in Figure 5 the size distribution of clus-
ters that contain a randomly-picked malware family, Asprox. The
sizes of the top 10 clusters range from 947 to 693, and cumulatively
they account for 12% of the total samples in the family. Asprox is a
long-running botnet, first detected in 2007, and encompasses many
variants. In practise, how researchers deal with the tail of clusters
depends on the application. Investigating the top cluster in one
iteration might help correctly classifying or clustering samples in
later iterations of the pipeline.

Hyperparameter sensitivity. ’s performance is fairly consis-
tent when varying ε . This indicates that the clustering distance
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Figure 5: Cluster size distribution for the Asprox family.

among families is much higher than ε , and thus this parameter does
not need to be manually set with high accuracy.

The hyperparameters used in the classificationmodel (such as the
number and size of neural network layers, dropout) have been tuned
on a similar data set source three months prior to this experiment
and have been kept constant across this work. At that time, our
team also chose to set ε to be 10−4 (see Section 3.3), as it creates
pure clusters that encompass polymorphic malware belonging to
the same family.

4.3.2 Workflow efficiency. In this second experiment, we simulate
how a threat intelligence team uses Spotlight, in order to quantify
the benefit to the team’s workflow.

Experimental setting. The data set we employ is the training
data set (see Section 4.1), with all labels initially removed to simu-
late the starting state of a threat intelligence team that has yet to
discover a single malware family of interest. We discard unlabeled
malware, as we do not have measurable ground truth for it.

To simulate how a researcher would use Spotlight, we execute
several rounds of researcher investigations, each of which produces
a malware signature that is fed back into our pipeline. A pseudocode
version for this procedure is described in Algorithm 1.

In the first iteration, as the researchers do not have any labeled
malware family and thus cannot train the malware family classifier,
we draw the classifier weights from a random distribution. We then
cluster all malware samples, and rank them by size: in this scenario,
our scorer is a simple counter of binaries, as the researcher is aiming
to find the largest botnets.

We then simulate a researcher investigating the clusters as fol-
lows. Starting from the top cluster, the researcher is discarding
clusters that have less than 95% homogeneity, and stopping at the
first pure cluster. Impure clusters, as identified through our ground
truth labels, are discarded since they require excessive manual in-
vestigation and would defeat the purpose of using Spotlight. Once
the researcher finds the first pure cluster, they write a malware
signature that identifies that malware family in the cluster. The sig-
nature is then run against all malware in the data set, and samples
that match it are labeled with the family label, which we initially
had removed.
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Algorithm 1: Workflow efficiency experiment procedure
pseudocode.
let iterationCounter = 0;
Hide all family labels from data set;
Initialize family classifier with random weights;
while iterationCounter < 10 do

iterationCounter += 1;
Run Spotlight to produce clusters for unknown malware;
let pureClusterFound = false;
for cluster in rankedClusters do

Calculate cluster purity (Simulates investigation);
if cluster purity is over 95% then

pureClusterFound = true;
break;

end
end
if not pureClusterFound then

return
end
Reveal family label (Simulates signature generation);
Retrain Spotlight with the newly-discovered family label;

end

Subsequent iterations are performed in a similar fashion, except
that now we are able to train the known-malware-family classifier
using the family labels that were uncovered in previous rounds.

Results.We run a total of 10 iterations, to see which malware
family is discovered. During the first iteration, where the classifier
was untrained, the researcher discards the top cluster to find a 95+%
pure cluster in the second position in the ranking. For all subsequent
iterations, the top cluster surpasses the 95% purity threshold, so
no clusters are discarded. The first two iterations remove more
than half of the data set from the simulated unknown data set (see
Figure 6). After 7 and 10 iterations, we respectively capture 90%
and 98% of all malware samples in the data set.

Baseline. As a baseline for this experiment, we also simulate
a researcher that picks malware samples at random from the data
set (i.e., without Spotlight) and writes a family signature once they
have analyzed T samples from the same family.

We show the results in Table 6. As expected, a hypothetical re-
searcher that is able to generate a family signature after analyzing
a single malware sample can effectively match Spotlight’s perfor-
mance and does not benefit from clustering. In reality, however, a
researcher has to be exposed to the variations among samples of
the same malware families in order to identify a common structure
among them and write a precise signature. As the table shows, the
more samples are needed for the researcher, the more they would
benefit from Spotlight. This is also true in a team setting, as using
Spotlight allows the team lead to ensure that each researcher is
working on a different malware family, improving efficiency.

4.3.3 Family classification performance. In this experiment, we
train the known family classifier on the training data set to obtain
performance metrics about its classification performance. We find
that classification precision is 0.997 or higher for 18 families, in
the 0.95-0.997 range for four families (Elise - 0.99, Buterat - 0.98,

Table 6: Malware family signatures generated by a re-
searcher without Spotlight (10,000 simulations per each T ).

T Family signatures Data set coverage

Mean Median Mean Median
1 10 10 96.5% 96.8%
2 3.62 4 70.5% 72.0%
3 1.67 2 39.9% 43.5%
4 0.68 1 17.5% 25.6%
5 0.22 0 5.8% 0%
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Figure 6: Ratio of malware samples associated with a mal-
ware family at each iteration.

EvilGrab - 0.97, Cobian - 0.95), and under 0.95 for four families (Re-
actorBot 0.92, Corebot 0.86, Wannacry - 0.58, Simda - 0.56). These
last four families have similar traits of other families in the data set,
which confuses the classifier (such as WannaCry and WannaCry-
Worm). The unknown family class obtains 0.99 accuracy. As the
latter class is predominant in the data set, the overall weighted
accuracy is also over 0.996.

The recall distribution mimics the accuracy one, with most fami-
lies with over 0.997 recall, except for three in the 0.98-0.997 range
(Kronos, Elise, Buterat), ReactorBot at 0.92, and two families at low
recall (Simba - 0.57, WannaCry - 0.59). The unknown family class
has a recall of 0.99.

4.4 Efficiency at Scale
We designed Spotlight to be run on a daily basis at minimum - as
such, efficiency is key. After each cluster investigation by a threat
intelligence researcher we also rerun the pipeline to include the
newly produced signatures and labels and to automatically remove
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newly discovered malware families from the cluster. Frequent re-
training also allows Spotlight to continuously surface emerging
and evolving threats.

For these reasons, it is imperative that Spotlight’s resource de-
mands are reasonable. We measured the computational cost of
running Spotlight (minus its human component) on the hunting
data set. Spotlight took 34 minutes to process 67Mmalware samples,
running on 7 CPU cores (231 CPU minutes) and 12GB of memory.

The most resource-intensive portion of Spotlight is undoubtedly
the clustering, as hierarchical agglomerative clustering has a qua-
dratic worst-case run time. We keep our system efficient through
two strategies: clustering on embeddings, which yields a 3811-fold
dimensionality reduction (121,947 normalized features are encoded
into a 32-float embedding), and sample deduplication, which con-
denses the 67M malware samples into 2.8M (2,726,130) preclusters.
See Section 3.3 for details. We find that without deduplication the
clustering would be effectively be infeasible due to the excessive
resource requirements, whereas the embedding main contribution
is to improve cluster quality (see Section 4.7).

4.5 Manually investigating cluster quality
In this section we execute Spotlight on our 67M hunting data set,
after training it on the training data set. As in the previous ex-
periment, the ad-hoc scorer simply ranks larger clusters first, to
emulate hunting for large botnets. We will discuss a case study with
a different scorer in Section 5.

The largest cluster contains 872,483 malware samples. The top-
10 clusters’ average size is 547,164 samples. Over the whole data set,
the mean and median cluster size are respectively 38 and 2. In other
words, the distribution of cluster sizes comprises an initial set of
large clusters and a long tail of tiny clusters, for a total of 1,561,047.
This is not detrimental to Spotlight’s purpose, as the researchers
only investigate the top clusters, and it is expected that the data
set contains some large polymorphic malware families and some
one-off “families” that include a single malware sample.

Since homogeneity and v-measure cannot be evaluated in the
absence of ground truth for this data set, we manually investigated
the top 10 clusters, analyzing 10 random malware samples per
cluster. In nine of these clusters, all malware samples belonged
to the same cluster-specific family. In the tenth cluster, we found
a single sample belonging to a different family than its cluster
peers. This qualitative analysis indicates that the top clusters are
99% homogeneous, which is in line with what we found in our
controlled experiments described above.

4.6 Limiting to VirusTotal features
In the spirit of reproducibility, we run Spotlight without any pro-
prietary signatures, instead relying exclusively on the signatures
provided by VirusTotal. This scenario allows the research commu-
nity to compare other approaches to this problem to ours.

Table 7 shows how the performance changes with fewer fea-
tures. The drop in classifier accuracy can be explained by some
malware families that are not represented with expressive features
in VirusTotal. The clustering performance seems to be only slightly
affected for the important bigger clusters. With fewer features to
differentiate, the number of smaller clusters decreases. The top 10

Table 7: Comparison of performances after excluding pri-
vate features

Metric All features VirusTotal

Classifier accuracy 0.996 0.875
Mean per class accuracy 0.853 0.716
Precision for unknown class 0.9994 0.9988
Recall for unknown class 0.992 0.937
Investigated purity 99% 98%
Top cluster size 872,483 883,597
Top 10 cluster size average 547,164 644,871
Number of clusters 1,561,047 337,225
Median cluster size 2 6

clusters for both feature sets identify the same malware families 6
times.

4.7 Removing the Family Classifier
In this section, we provide a data-driven justification for our choice
of introducing a family classifier in front of our clustering compo-
nent. To do so, we remove the known-malware-family classifier in
Figure 1, and instead opt to directly cluster the 121,947-dimensional
input features representing each malware sample. Comparing the
results of this experiment with the reference implementation of
Spotlight will quantify the benefit that the family classifier brings
to the table.

We run this modified framework on the hunting data set. As this
approach is completely unsupervised, we drop the family labels,
and we one-hot encode the input features that we pass on to the
clustering component. The clustering then executes as usual.

We then manually investigate the top 10 clusters, as we did with
the reference framework in Section 4.5. We find that one of the
clusters contained samples belonging to at least three malware
families, and seven clusters had at least one false positive. These
seven clusters were also present in the reference framework output,
though with higher purity. We estimate that the purity degraded
from 99% to 93%, which would severely impact the usefulness of
Spotlight. This data indicates that there is a statistically significant
drop in cluster homogeneitywhen using the unsupervised approach.
Additionally, we note that the average cluster size grew by 3%, and
the computational advantage of clustering on compact embedding
is lost, as well as the effectiveness of preclustering.

We can then conclude that the known-malware family classifier
improves the quality of the results and the efficiency of the pipeline.

5 CASE STUDY: HUNTING AD FRAUD
BOTNETS

To conclude the evaluation section, we present a case study in which
we use Spotlight to hunt for ad fraud botnets. The application-
specific scorer we adopt for this task is described in Section 3.4.

We ran this pipeline on the hunting data set (67M samples),
and we investigated the top 20 clusters produced by the pipeline.
Our team discovered that these 20 clusters exclusively contained
various versions of three botnets. Upon further investigation, we
determined that two of these botnet families did not match other
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botnets known to our team. Despite their novelty, further analysis
enabled us to determine that the impact from these botnets to our
invalid-traffic defenses was minimal.

Its presence in our malware data set was due to its binaries being
flagged as suspicious by proprietary static and dynamic analysis
systems.

Our analysis of random binaries from each of the top 20 clusters
found that all binaries belonged to a specific version of one of the
three botnets, with no clusters containing heterogeneous binaries.
We did not find other botnets in those top 20 clusters.

Specifically, the three ad fraud botnets surfaced by Spotlight are:

• An ad fraud botnet using Embedded Internet Explorer to
perform impression-fraud on websites. Most infections have
been in South Korea and the USA.

• A traffic-selling botnet hijacking browsers’ search engine
settings to replace them with their websites. We have identi-
fied more than 1.3k similar looking search engine websites,
which are used as redirection targets.

• A traffic-exchange botnet which also offers SEO function-
ality, allowing its customers to write scripts to search for a
site to promote on search engines, identify keywords on the
result page, and click on links. Most infections have been in
China.

6 DISCUSSION
In this section we discuss a few limitations of Spotlight.

Evasion techniques. Spotlight relies on metadata from static
(e.g., YARA signatures) and dynamic analysis systems (e.g., hon-
eypots). As such, it is vulnerable to the evasion attacks that affect
those systems, such as obfuscation, cloaking, or fingerprinting. If a
piece of malware manages to evade all the detection systems that
feed into , then our pipeline will not yield any results either. Fortu-
nately, relies on the aggregated metadata extracted by these tools,
so if some detection systems successfully identify the malware, then
can process it. This happened, for example, for the botnet identified
in Section 5.

Training data. As shown in Figure 3, cluster quality benefits
from the availability of family labels, as they allow the family classi-
fier to produce more expressive embeddings. Obtaining these family
labels is a time-intensive activity, and it might be challenging in
applications where malware samples are scarce, such as hunting
for APTs. Fortunately, as shown in Section 4.3.1, just a few family
labels are needed to produce an embedding that allows to produce
high-quality clusters.

Application-specific scorer.As our approach relies on a scorer
to rank clusters, it has to be possible to express the team objective
(e.g., finding ad fraud) in code. This is not always the case: finding
novel exploits used by malware, for example, is a tricky objective
to express as a scorer.

Small malware families. As leverages clustering to identify
malware families, it works particularly well to identify polymorphic
malware with many variants. While most successful botnets fit this
description perfectly, highly targeted attacks or APTs do not. In
those cases, clustering does not provide the benefit of scaling the
researcher impact (e.g., looking at a few samples to label a few
clusters with hundreds of binaries), as the cluster size for these

attacks will be extremely small. In these cases, ’s only contribution
is to remove botnets aimed at the general public from the data set,
to leave only uncommon malware samples, which might include
APTs.

Manual analysis required. Despite automating the malware
prioritization process with our approach, manual analysis capacity
and knowledge is still required. For example, to reverse engineer
the binaries and decide whether specific malware strains are an
actual threat.

7 RELATEDWORK
Malware family classification. Huang and Stokes [13] has some
similarity to our approach, as it proposes a fully-supervised deep-
learning classifier to label malware to known families as an auxiliary
task on 4.5M training and 2M test samples. These researchers find
that a classifier focusing only on family accuracy achieves an ac-
curacy of 97.06%. However, training a classifier to simultaneously
learn to identify malware and to attribute it to a family raises accu-
racy to 99.64%, which matches our single-task classifier. We note
that the goal of this prior research differs from ours, as it solely
focuses on assigning a known-family label to malware, instead of
hunting for novel families.

Encoding malware features. The above paper uses random
projections, as introduced by Dahl et al. [7], to reduce the dimen-
sionality of input features in an unsupervised fashion (projecting
50,000 features into 4,000). Wojnowicz et al. [20] improved on this
approach by introducing randomized principal component analysis.
To our knowledge, their data set (11.7M malware samples) was the
largest to date used in malware classification or clustering research.
On a binary malware-or-not classification task, they reduce the
input feature space from 100,000 to 5,000 dimensions with minimal
loss of accuracy (98,83%). In our approach, we opted to reduce our
200,000 input features with hash buckets. As we already achieve
0.9994 precision for the “unknown malware” class, we have not
explored alternative approaches to hash buckets.

Malware clustering. Sebastián et al. [19] propose a tool to label
malware at scale, which automatically tokenizes, deduplicates and
normalizes malware labels from antivirus engines. Effectively, the
processed labels can act as cluster identifiers. They demonstrate
the effectiveness of their system on 10 data sets comprising 8.9M
samples. This approach shares some similarities with ours as it pro-
duces malware clusters in a mostly-unsupervised fashion, though
it does not focus on identifying unknown malware or rank it ac-
cording to business needs. Comparing the performance of the two
approaches is unfeasible due to the difference in scope of the two
systems - the precision of this approach on known families ranges
from 67.5% to 96.3% depending on the data set, with a recall from
46.3% to 98.8%.

Bailey et al. [3], Hu et al. [12] and Bayer et al. [4] describe seman-
tic behavior-based clustering approaches using artifacts of static
and/or dynamic analysis as features. They run their experiments
on ten thousands to hundreds of thousands of samples.

Graziano et al. [10] combine dynamic and static analysis with
features based on the file submission of public malware sandboxes
to automatically track and identify malware development. They
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show-case their approach to targeted attacks and malware trying
to evade detections from known malware analysis sandboxes.

Zhang et al [21] proposed an ensemble technique to combine dif-
ferent features from static or dynamic analysis after clustering. To
make sure that all included feature sources improve the clustering
quality, they selectively add them to their ensemble. Our approach
instead combines different feature input sources using an embed-
ding. All sources contribute to that embedding before clustering.
Quality is controlled more implicitly, training the embeddings on a
classification task.

8 CONCLUSION
In this paper, we proposed a novel framework to identify and pri-
oritize relevant unknown threats, with the goal of saving threat
intelligence researchers’ time, a scarce resource. We evaluated on
multiple large data sets, up to 67M malware samples, to show that
the proposed approach can scale and produce top-priority clusters
with high purity. To our knowledge, this is the largest data set to
date to be used in a peer-reviewed malware clustering publication.
To showcase ’s effectiveness, we applied it to ad fraud malware
hunting on real-world data. In doing so, we identified three large
botnets that perform ad fraud (one doing impression fraud with an
embedded browser, a traffic-selling botnet, and a traffic exchange
botnet). Our experiments demonstrate that is a valuable addition
to the toolkit available to a threat intelligence researcher.
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