
OpenConflict
Preventing Map Hack in online games

Elie Bursztein, Mike Hamburg, Jocelyn Lagarenne, Dan Boneh
Stanford University

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Welcome to the real world

#kartograph / @elie

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Game industry

273 Millions games sold in
2009

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Strategy account for 35% of
the games sold in 2009

Game Tournaments

Game Tournaments

Cash prize up to 200,000$

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Outline

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Outline

• Background

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Outline

• Background

• Memory based map-hack with Kartograph

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Outline

• Background

• Memory based map-hack with Kartograph

• Defending against map-hack

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Outline

• Background

• Memory based map-hack with Kartograph

• Defending against map-hack

• Starcraft 2 case study

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Outline

• Background

• Memory based map-hack with Kartograph

• Defending against map-hack

• Starcraft 2 case study

• Open conflict benchmark

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Background

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

supernatural powers !

• Learn kungfu

• Infinite money

• Xray vision

• god mode

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Memory based attack

Memory

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Memory based attack

Memory

Modification

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Memory based attack

Memory

Modification

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Benefits (fast and furious)

• Generic

• Fast

• Invisible

• Generic

• Fast

• Invisible

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

• Structure are hard to
find

• No control over the
flow

Drawbacks: Needle in a Haystack

Game memory Structures

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Resources

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Resources

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Building

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Units

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Minimap

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

RTS example Starcraft 2

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

How to cheat at a RTS ?

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

How to cheat at a RTS ?

Resources

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

How to cheat at a RTS ?

Resources units

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

How to cheat at a RTS ?

Resources units map

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

What is a map hack ?

Fog of war

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

What is a map hack ?

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

There is no spoon

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Defeating security via obscurity

• Find the information
hidden by the game

• Understand the data
structures

• Abuse this knowledge

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Kartograph

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

What is Kartograph ?

• Memory analysis techniques

• Visualization techniques

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

How Kartograph works ?

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

How Kartograph works ?

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

How Kartograph works ?

Reduce
haystack

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

How Kartograph works ?

Reduce
haystack

Find

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

How Kartograph works ?

Reduce
haystack

Find Understand

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

How Kartograph works ?

Reduce
haystack

Find Understand Rewrite

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Acquiring game memory

Game
memory

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Acquiring game memory

Game
memory

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Reducing memory

Game
memory

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Reducing memory

Game
memory

Step 1 play

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Reducing memory

Game
memory

Step 1 play

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Reducing memory

Game
memory

Step 1 play Step 2 discover

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Reducing memory

Game
memory

Step 1 play Step 2 discover

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Reducing memory

Game
memory

Step 1 play Step 2 discover Step 3 play

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Reducing memory

Game
memory

Step 1 play Step 2 discover Step 3 play

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Reducing memory

Game
memory

http://elie.im
http://elie.im

Acquiring the game’s
memory

Step 1
Removing unrelated

memory

Step 2
Discovering the map and
keeping relevant memory

Step 3
Removing more unrelated

memory

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Memory reduction algorithm efficiency

0

375

750

1125

1500

Launch Play Discover Play More

Po
te

nt
ia

l M
em

or
y

in
 M

eg
ab

yt
es

Starcraft II C&C TS C&C Red Alert 2
C&C Red Alert 3 Age of Empires III Supreme Commander 2
Civilization IV Anno 1701 Warcraft III

http://elie.im
http://elie.im

Step 4
Finding the map in the

remaining memory

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Working
assumption

Maps are stored in
2-D arrays

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Working
assumption

Maps are stored in
2-D arrays

http://elie.im
http://elie.im

Step 5
Isolating the potential map

In game In memory

Step 6
Understanding the map’s

structure

Step 8
Rewriting game memory

for fun and profit

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Starcraft 2 mini map

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Starcraft 2 mini map

http://elie.im
http://elie.im

Unexpected effects

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Defense requirements

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

The passive eavesdropping adversary

• Complete control of his machine

• Can understand the game memory structure

• Can identify and parse any data structure

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Attacker objective definition

We say that a passive attacker defeats the game if the
attacker can write a program P that reveals information

about the opponent beyond what is revealed by the
game's rules. Otherwise we say that the game is

secure against a passive adversary.

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Making games secure

• Use two-party (multi-party) cryptography protocol to
ensure that the memory contains only the data the
user need

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Set intersection protocol

Alice Bob

Va

∩

Va ∩Ub

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Set intersection protocol

Alice Bob
Va

∩

Va ∩Ub

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Set intersection protocol

Alice Bob
Va

∩

Va ∩Ub

Va

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Set intersection protocol

Alice Bob
Va

∩

Va ∩Ub
Va

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Set intersection protocol

Alice Bob
Va

∩

Va ∩Ub
Va

Va ∩Ub

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Constraints

• Bob learn nothing about Va

• Alice learn nothing about Ub other than Va ∩Ub

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Constraints

• Bob learn nothing about Va

• Alice learn nothing about Ub other than Va ∩Ub

Computing with these constraints is called the

oblivious intersection set problem

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Chosen oblivisous intersection protocol

• Due to Jarecki and Liu

• Use an oblivious function evaluation as sub-protocol

• Adapted and optimized for our problem

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

For one unit

BobAlice

For each pair of opposing players (let’s call them Alice
and Bob), Alice can see some of Bob’s units (those close to
her own units), but not others. We want Bob to send Alice
data on those units that she can see, but not on those units
that she cannot see. The problem is that Bob doesn’t know,
and shouldn’t be allowed to know, which of his units Alice
can see. A solution to this problem is to use an oblivious
intersection protocol.

A. Oblivious Set Intersection

Let M be the set of all cells on the map. Each cell may
contain units, buildings and other objects; we will refer
to these generically as “units”. Alice has units scattered
across the map and each unit has a visibility radius. Taking
the union of all of Alice’s visibility regions gives the set
VA ⊆ M of cells that Alice can see. Let UB ⊆ M denote
the set of map cells containing Bob’s units.

The game needs to show Alice all the units belonging to
any player within her visibility region. To get Bob’s data,
Alice’s machine needs to determine VA ∩ UB subject to two
constraints stated informally as:

1) Bob should learn nothing about VA (so that he learns
nothing about the location of Alice’s units), and

2) Alice should learn nothing about UB other than VA ∩
UB (so that she learns nothing about the location of
Bob’s units).

Given VA ∩ UB Alice’s machine can correctly render the
cells in VA, as required. Likewise, we want Bob to learn
VB ∩ UA, namely Alice’s units in Bob’s visibility regions,
and this will be accomplished by running the protocol in
the reverse direction.

The problem of computing VA ∩ UB subject to the two
constraints above is called oblivious set intersection and
many protocols for this problem have been proposed [10],
[20], [14], [5], [13], [17], [18], [8], as discussed in Section X.
For each cell in the intersection, Alice wants to learn
information about Bob’s units in that cell. We encapsulate
this as a function fB : UB → D for some data domain D.
We would like a protocol whereby Alice learns the value of
fB on VA ∩ UB but not anything about UB\VA, and Bob
learns nothing about Alice’s units.

Since we are mostly concerned with eavesdropping attacks
we will assume a passive threat model (a.k.a. honest but
curious) meaning that Alice and Bob will execute the protocol
faithfully, but they wish to gain information by looking at
the flows. Formally, the security requirement is that

1) Given UB there is a simulator that simulates Bob’s
view of the protocol (and therefore Bob learns nothing
from the interaction with Alice), and

2) Given VA and VA ∩ UB there is a simulator that
simulates Alice’s view of the protocol (and therefore
Alice learns nothing from the interaction other than
VA ∩ UB).

A protocol satisfying these two requirement is said to be
private for passive adversaries.

B. Oblivious Function Evaluation

We found that a good starting point for our settings is an
oblivious intersection protocol due to Jarecki and Liu [18]
which uses oblivious function evaluation as a sub-protocol
(a related protocol is presented in [8]). We describe the
protocol while adapting and optimizing it to our settings.

Oblivious function evaluation is defined with respect to
a keyed function ok(v) that uses a secret key k to map a
value v to some domain. Bob holds the secret key k. An
oblivious function evaluation protocol is a way for Alice
to learn {ok(v) : v ∈ VA}, without learning ok(w) for any
w /∈ VA, and without Bob learning anything about VA.

For our function ok(v), we choose a group G of prime
order q (in particular, a subgroup of the points on an elliptic
curve) and a hash function H1 : M → G\{1}. Bob’s key k

is a random integer in [1, q − 1], and the function ok(·) is
defined as:

ok(v) := H1(v)
k ∈ G .

Now, the oblivious function evaluation protocol runs as
follows:

• Alice chooses a random integer r ∈ [1, q − 1]
and sends x := H1(v)r to Bob;

• Bob responds with y := x
k = H1(v)rk;

• Alice computes ok(v) = y
r−1

.

Simple variants of this can be more efficient for certain
groups G. For example, Alice can blind v in step (1) as
H1(v) · gr for some generator g. She unblinds y in step (3)
as yr

−1
/g

r. This variant improves efficiency of step (1) since
Alice’s exponentiations are relative to a fixed base g.

Theorem 7.1: If the Computational Diffie-Hellman (CDH)
assumption holds in G then the protocol above is a secure
oblivious function evaluation protocol when H1 is modeled
as a random oracle.

Proof: Bob sees only one random group element from
Alice, so his view of the interaction can be simulated by
choosing a random element in G. Hence, Bob learns nothing
from the interaction. Now, suppose Alice and Bob run the
protocol on VA so that Alice learns {ok(v) : v ∈ VA}.
Suppose Alice can find some w �∈ VA so that she can compute
ok(w). We show how to use Alice to solve a CDH challenge,
which is compute h

k given g, g
k
, h. We run a simulation

with the random oracle rigged to give g
sv on v ∈ VA and

h
sw on w ∈ M\VA, where the simulator knows the values

sv and sw.

unit key:

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

For one unit

BobAlice

For each pair of opposing players (let’s call them Alice
and Bob), Alice can see some of Bob’s units (those close to
her own units), but not others. We want Bob to send Alice
data on those units that she can see, but not on those units
that she cannot see. The problem is that Bob doesn’t know,
and shouldn’t be allowed to know, which of his units Alice
can see. A solution to this problem is to use an oblivious
intersection protocol.

A. Oblivious Set Intersection

Let M be the set of all cells on the map. Each cell may
contain units, buildings and other objects; we will refer
to these generically as “units”. Alice has units scattered
across the map and each unit has a visibility radius. Taking
the union of all of Alice’s visibility regions gives the set
VA ⊆ M of cells that Alice can see. Let UB ⊆ M denote
the set of map cells containing Bob’s units.

The game needs to show Alice all the units belonging to
any player within her visibility region. To get Bob’s data,
Alice’s machine needs to determine VA ∩ UB subject to two
constraints stated informally as:

1) Bob should learn nothing about VA (so that he learns
nothing about the location of Alice’s units), and

2) Alice should learn nothing about UB other than VA ∩
UB (so that she learns nothing about the location of
Bob’s units).

Given VA ∩ UB Alice’s machine can correctly render the
cells in VA, as required. Likewise, we want Bob to learn
VB ∩ UA, namely Alice’s units in Bob’s visibility regions,
and this will be accomplished by running the protocol in
the reverse direction.

The problem of computing VA ∩ UB subject to the two
constraints above is called oblivious set intersection and
many protocols for this problem have been proposed [10],
[20], [14], [5], [13], [17], [18], [8], as discussed in Section X.
For each cell in the intersection, Alice wants to learn
information about Bob’s units in that cell. We encapsulate
this as a function fB : UB → D for some data domain D.
We would like a protocol whereby Alice learns the value of
fB on VA ∩ UB but not anything about UB\VA, and Bob
learns nothing about Alice’s units.

Since we are mostly concerned with eavesdropping attacks
we will assume a passive threat model (a.k.a. honest but
curious) meaning that Alice and Bob will execute the protocol
faithfully, but they wish to gain information by looking at
the flows. Formally, the security requirement is that

1) Given UB there is a simulator that simulates Bob’s
view of the protocol (and therefore Bob learns nothing
from the interaction with Alice), and

2) Given VA and VA ∩ UB there is a simulator that
simulates Alice’s view of the protocol (and therefore
Alice learns nothing from the interaction other than
VA ∩ UB).

A protocol satisfying these two requirement is said to be
private for passive adversaries.

B. Oblivious Function Evaluation

We found that a good starting point for our settings is an
oblivious intersection protocol due to Jarecki and Liu [18]
which uses oblivious function evaluation as a sub-protocol
(a related protocol is presented in [8]). We describe the
protocol while adapting and optimizing it to our settings.

Oblivious function evaluation is defined with respect to
a keyed function ok(v) that uses a secret key k to map a
value v to some domain. Bob holds the secret key k. An
oblivious function evaluation protocol is a way for Alice
to learn {ok(v) : v ∈ VA}, without learning ok(w) for any
w /∈ VA, and without Bob learning anything about VA.

For our function ok(v), we choose a group G of prime
order q (in particular, a subgroup of the points on an elliptic
curve) and a hash function H1 : M → G\{1}. Bob’s key k

is a random integer in [1, q − 1], and the function ok(·) is
defined as:

ok(v) := H1(v)
k ∈ G .

Now, the oblivious function evaluation protocol runs as
follows:

• Alice chooses a random integer r ∈ [1, q − 1]
and sends x := H1(v)r to Bob;

• Bob responds with y := x
k = H1(v)rk;

• Alice computes ok(v) = y
r−1

.

Simple variants of this can be more efficient for certain
groups G. For example, Alice can blind v in step (1) as
H1(v) · gr for some generator g. She unblinds y in step (3)
as yr

−1
/g

r. This variant improves efficiency of step (1) since
Alice’s exponentiations are relative to a fixed base g.

Theorem 7.1: If the Computational Diffie-Hellman (CDH)
assumption holds in G then the protocol above is a secure
oblivious function evaluation protocol when H1 is modeled
as a random oracle.

Proof: Bob sees only one random group element from
Alice, so his view of the interaction can be simulated by
choosing a random element in G. Hence, Bob learns nothing
from the interaction. Now, suppose Alice and Bob run the
protocol on VA so that Alice learns {ok(v) : v ∈ VA}.
Suppose Alice can find some w �∈ VA so that she can compute
ok(w). We show how to use Alice to solve a CDH challenge,
which is compute h

k given g, g
k
, h. We run a simulation

with the random oracle rigged to give g
sv on v ∈ VA and

h
sw on w ∈ M\VA, where the simulator knows the values

sv and sw.

For each pair of opposing players (let’s call them Alice
and Bob), Alice can see some of Bob’s units (those close to
her own units), but not others. We want Bob to send Alice
data on those units that she can see, but not on those units
that she cannot see. The problem is that Bob doesn’t know,
and shouldn’t be allowed to know, which of his units Alice
can see. A solution to this problem is to use an oblivious
intersection protocol.

A. Oblivious Set Intersection

Let M be the set of all cells on the map. Each cell may
contain units, buildings and other objects; we will refer
to these generically as “units”. Alice has units scattered
across the map and each unit has a visibility radius. Taking
the union of all of Alice’s visibility regions gives the set
VA ⊆ M of cells that Alice can see. Let UB ⊆ M denote
the set of map cells containing Bob’s units.

The game needs to show Alice all the units belonging to
any player within her visibility region. To get Bob’s data,
Alice’s machine needs to determine VA ∩ UB subject to two
constraints stated informally as:

1) Bob should learn nothing about VA (so that he learns
nothing about the location of Alice’s units), and

2) Alice should learn nothing about UB other than VA ∩
UB (so that she learns nothing about the location of
Bob’s units).

Given VA ∩ UB Alice’s machine can correctly render the
cells in VA, as required. Likewise, we want Bob to learn
VB ∩ UA, namely Alice’s units in Bob’s visibility regions,
and this will be accomplished by running the protocol in
the reverse direction.

The problem of computing VA ∩ UB subject to the two
constraints above is called oblivious set intersection and
many protocols for this problem have been proposed [10],
[20], [14], [5], [13], [17], [18], [8], as discussed in Section X.
For each cell in the intersection, Alice wants to learn
information about Bob’s units in that cell. We encapsulate
this as a function fB : UB → D for some data domain D.
We would like a protocol whereby Alice learns the value of
fB on VA ∩ UB but not anything about UB\VA, and Bob
learns nothing about Alice’s units.

Since we are mostly concerned with eavesdropping attacks
we will assume a passive threat model (a.k.a. honest but
curious) meaning that Alice and Bob will execute the protocol
faithfully, but they wish to gain information by looking at
the flows. Formally, the security requirement is that

1) Given UB there is a simulator that simulates Bob’s
view of the protocol (and therefore Bob learns nothing
from the interaction with Alice), and

2) Given VA and VA ∩ UB there is a simulator that
simulates Alice’s view of the protocol (and therefore
Alice learns nothing from the interaction other than
VA ∩ UB).

A protocol satisfying these two requirement is said to be
private for passive adversaries.

B. Oblivious Function Evaluation

We found that a good starting point for our settings is an
oblivious intersection protocol due to Jarecki and Liu [18]
which uses oblivious function evaluation as a sub-protocol
(a related protocol is presented in [8]). We describe the
protocol while adapting and optimizing it to our settings.

Oblivious function evaluation is defined with respect to
a keyed function ok(v) that uses a secret key k to map a
value v to some domain. Bob holds the secret key k. An
oblivious function evaluation protocol is a way for Alice
to learn {ok(v) : v ∈ VA}, without learning ok(w) for any
w /∈ VA, and without Bob learning anything about VA.

For our function ok(v), we choose a group G of prime
order q (in particular, a subgroup of the points on an elliptic
curve) and a hash function H1 : M → G\{1}. Bob’s key k

is a random integer in [1, q − 1], and the function ok(·) is
defined as:

ok(v) := H1(v)
k ∈ G .

Now, the oblivious function evaluation protocol runs as
follows:

• Alice chooses a random integer r ∈ [1, q − 1]
and sends x := H1(v)r to Bob;

• Bob responds with y := x
k = H1(v)rk;

• Alice computes ok(v) = y
r−1

.

Simple variants of this can be more efficient for certain
groups G. For example, Alice can blind v in step (1) as
H1(v) · gr for some generator g. She unblinds y in step (3)
as yr

−1
/g

r. This variant improves efficiency of step (1) since
Alice’s exponentiations are relative to a fixed base g.

Theorem 7.1: If the Computational Diffie-Hellman (CDH)
assumption holds in G then the protocol above is a secure
oblivious function evaluation protocol when H1 is modeled
as a random oracle.

Proof: Bob sees only one random group element from
Alice, so his view of the interaction can be simulated by
choosing a random element in G. Hence, Bob learns nothing
from the interaction. Now, suppose Alice and Bob run the
protocol on VA so that Alice learns {ok(v) : v ∈ VA}.
Suppose Alice can find some w �∈ VA so that she can compute
ok(w). We show how to use Alice to solve a CDH challenge,
which is compute h

k given g, g
k
, h. We run a simulation

with the random oracle rigged to give g
sv on v ∈ VA and

h
sw on w ∈ M\VA, where the simulator knows the values

sv and sw.

unit key:

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

For one unit

BobAlice

For each pair of opposing players (let’s call them Alice
and Bob), Alice can see some of Bob’s units (those close to
her own units), but not others. We want Bob to send Alice
data on those units that she can see, but not on those units
that she cannot see. The problem is that Bob doesn’t know,
and shouldn’t be allowed to know, which of his units Alice
can see. A solution to this problem is to use an oblivious
intersection protocol.

A. Oblivious Set Intersection

Let M be the set of all cells on the map. Each cell may
contain units, buildings and other objects; we will refer
to these generically as “units”. Alice has units scattered
across the map and each unit has a visibility radius. Taking
the union of all of Alice’s visibility regions gives the set
VA ⊆ M of cells that Alice can see. Let UB ⊆ M denote
the set of map cells containing Bob’s units.

The game needs to show Alice all the units belonging to
any player within her visibility region. To get Bob’s data,
Alice’s machine needs to determine VA ∩ UB subject to two
constraints stated informally as:

1) Bob should learn nothing about VA (so that he learns
nothing about the location of Alice’s units), and

2) Alice should learn nothing about UB other than VA ∩
UB (so that she learns nothing about the location of
Bob’s units).

Given VA ∩ UB Alice’s machine can correctly render the
cells in VA, as required. Likewise, we want Bob to learn
VB ∩ UA, namely Alice’s units in Bob’s visibility regions,
and this will be accomplished by running the protocol in
the reverse direction.

The problem of computing VA ∩ UB subject to the two
constraints above is called oblivious set intersection and
many protocols for this problem have been proposed [10],
[20], [14], [5], [13], [17], [18], [8], as discussed in Section X.
For each cell in the intersection, Alice wants to learn
information about Bob’s units in that cell. We encapsulate
this as a function fB : UB → D for some data domain D.
We would like a protocol whereby Alice learns the value of
fB on VA ∩ UB but not anything about UB\VA, and Bob
learns nothing about Alice’s units.

Since we are mostly concerned with eavesdropping attacks
we will assume a passive threat model (a.k.a. honest but
curious) meaning that Alice and Bob will execute the protocol
faithfully, but they wish to gain information by looking at
the flows. Formally, the security requirement is that

1) Given UB there is a simulator that simulates Bob’s
view of the protocol (and therefore Bob learns nothing
from the interaction with Alice), and

2) Given VA and VA ∩ UB there is a simulator that
simulates Alice’s view of the protocol (and therefore
Alice learns nothing from the interaction other than
VA ∩ UB).

A protocol satisfying these two requirement is said to be
private for passive adversaries.

B. Oblivious Function Evaluation

We found that a good starting point for our settings is an
oblivious intersection protocol due to Jarecki and Liu [18]
which uses oblivious function evaluation as a sub-protocol
(a related protocol is presented in [8]). We describe the
protocol while adapting and optimizing it to our settings.

Oblivious function evaluation is defined with respect to
a keyed function ok(v) that uses a secret key k to map a
value v to some domain. Bob holds the secret key k. An
oblivious function evaluation protocol is a way for Alice
to learn {ok(v) : v ∈ VA}, without learning ok(w) for any
w /∈ VA, and without Bob learning anything about VA.

For our function ok(v), we choose a group G of prime
order q (in particular, a subgroup of the points on an elliptic
curve) and a hash function H1 : M → G\{1}. Bob’s key k

is a random integer in [1, q − 1], and the function ok(·) is
defined as:

ok(v) := H1(v)
k ∈ G .

Now, the oblivious function evaluation protocol runs as
follows:

• Alice chooses a random integer r ∈ [1, q − 1]
and sends x := H1(v)r to Bob;

• Bob responds with y := x
k = H1(v)rk;

• Alice computes ok(v) = y
r−1

.

Simple variants of this can be more efficient for certain
groups G. For example, Alice can blind v in step (1) as
H1(v) · gr for some generator g. She unblinds y in step (3)
as yr

−1
/g

r. This variant improves efficiency of step (1) since
Alice’s exponentiations are relative to a fixed base g.

Theorem 7.1: If the Computational Diffie-Hellman (CDH)
assumption holds in G then the protocol above is a secure
oblivious function evaluation protocol when H1 is modeled
as a random oracle.

Proof: Bob sees only one random group element from
Alice, so his view of the interaction can be simulated by
choosing a random element in G. Hence, Bob learns nothing
from the interaction. Now, suppose Alice and Bob run the
protocol on VA so that Alice learns {ok(v) : v ∈ VA}.
Suppose Alice can find some w �∈ VA so that she can compute
ok(w). We show how to use Alice to solve a CDH challenge,
which is compute h

k given g, g
k
, h. We run a simulation

with the random oracle rigged to give g
sv on v ∈ VA and

h
sw on w ∈ M\VA, where the simulator knows the values

sv and sw.

For each pair of opposing players (let’s call them Alice
and Bob), Alice can see some of Bob’s units (those close to
her own units), but not others. We want Bob to send Alice
data on those units that she can see, but not on those units
that she cannot see. The problem is that Bob doesn’t know,
and shouldn’t be allowed to know, which of his units Alice
can see. A solution to this problem is to use an oblivious
intersection protocol.

A. Oblivious Set Intersection

Let M be the set of all cells on the map. Each cell may
contain units, buildings and other objects; we will refer
to these generically as “units”. Alice has units scattered
across the map and each unit has a visibility radius. Taking
the union of all of Alice’s visibility regions gives the set
VA ⊆ M of cells that Alice can see. Let UB ⊆ M denote
the set of map cells containing Bob’s units.

The game needs to show Alice all the units belonging to
any player within her visibility region. To get Bob’s data,
Alice’s machine needs to determine VA ∩ UB subject to two
constraints stated informally as:

1) Bob should learn nothing about VA (so that he learns
nothing about the location of Alice’s units), and

2) Alice should learn nothing about UB other than VA ∩
UB (so that she learns nothing about the location of
Bob’s units).

Given VA ∩ UB Alice’s machine can correctly render the
cells in VA, as required. Likewise, we want Bob to learn
VB ∩ UA, namely Alice’s units in Bob’s visibility regions,
and this will be accomplished by running the protocol in
the reverse direction.

The problem of computing VA ∩ UB subject to the two
constraints above is called oblivious set intersection and
many protocols for this problem have been proposed [10],
[20], [14], [5], [13], [17], [18], [8], as discussed in Section X.
For each cell in the intersection, Alice wants to learn
information about Bob’s units in that cell. We encapsulate
this as a function fB : UB → D for some data domain D.
We would like a protocol whereby Alice learns the value of
fB on VA ∩ UB but not anything about UB\VA, and Bob
learns nothing about Alice’s units.

Since we are mostly concerned with eavesdropping attacks
we will assume a passive threat model (a.k.a. honest but
curious) meaning that Alice and Bob will execute the protocol
faithfully, but they wish to gain information by looking at
the flows. Formally, the security requirement is that

1) Given UB there is a simulator that simulates Bob’s
view of the protocol (and therefore Bob learns nothing
from the interaction with Alice), and

2) Given VA and VA ∩ UB there is a simulator that
simulates Alice’s view of the protocol (and therefore
Alice learns nothing from the interaction other than
VA ∩ UB).

A protocol satisfying these two requirement is said to be
private for passive adversaries.

B. Oblivious Function Evaluation

We found that a good starting point for our settings is an
oblivious intersection protocol due to Jarecki and Liu [18]
which uses oblivious function evaluation as a sub-protocol
(a related protocol is presented in [8]). We describe the
protocol while adapting and optimizing it to our settings.

Oblivious function evaluation is defined with respect to
a keyed function ok(v) that uses a secret key k to map a
value v to some domain. Bob holds the secret key k. An
oblivious function evaluation protocol is a way for Alice
to learn {ok(v) : v ∈ VA}, without learning ok(w) for any
w /∈ VA, and without Bob learning anything about VA.

For our function ok(v), we choose a group G of prime
order q (in particular, a subgroup of the points on an elliptic
curve) and a hash function H1 : M → G\{1}. Bob’s key k

is a random integer in [1, q − 1], and the function ok(·) is
defined as:

ok(v) := H1(v)
k ∈ G .

Now, the oblivious function evaluation protocol runs as
follows:

• Alice chooses a random integer r ∈ [1, q − 1]
and sends x := H1(v)r to Bob;

• Bob responds with y := x
k = H1(v)rk;

• Alice computes ok(v) = y
r−1

.

Simple variants of this can be more efficient for certain
groups G. For example, Alice can blind v in step (1) as
H1(v) · gr for some generator g. She unblinds y in step (3)
as yr

−1
/g

r. This variant improves efficiency of step (1) since
Alice’s exponentiations are relative to a fixed base g.

Theorem 7.1: If the Computational Diffie-Hellman (CDH)
assumption holds in G then the protocol above is a secure
oblivious function evaluation protocol when H1 is modeled
as a random oracle.

Proof: Bob sees only one random group element from
Alice, so his view of the interaction can be simulated by
choosing a random element in G. Hence, Bob learns nothing
from the interaction. Now, suppose Alice and Bob run the
protocol on VA so that Alice learns {ok(v) : v ∈ VA}.
Suppose Alice can find some w �∈ VA so that she can compute
ok(w). We show how to use Alice to solve a CDH challenge,
which is compute h

k given g, g
k
, h. We run a simulation

with the random oracle rigged to give g
sv on v ∈ VA and

h
sw on w ∈ M\VA, where the simulator knows the values

sv and sw.

For each pair of opposing players (let’s call them Alice
and Bob), Alice can see some of Bob’s units (those close to
her own units), but not others. We want Bob to send Alice
data on those units that she can see, but not on those units
that she cannot see. The problem is that Bob doesn’t know,
and shouldn’t be allowed to know, which of his units Alice
can see. A solution to this problem is to use an oblivious
intersection protocol.

A. Oblivious Set Intersection

Let M be the set of all cells on the map. Each cell may
contain units, buildings and other objects; we will refer
to these generically as “units”. Alice has units scattered
across the map and each unit has a visibility radius. Taking
the union of all of Alice’s visibility regions gives the set
VA ⊆ M of cells that Alice can see. Let UB ⊆ M denote
the set of map cells containing Bob’s units.

The game needs to show Alice all the units belonging to
any player within her visibility region. To get Bob’s data,
Alice’s machine needs to determine VA ∩ UB subject to two
constraints stated informally as:

1) Bob should learn nothing about VA (so that he learns
nothing about the location of Alice’s units), and

2) Alice should learn nothing about UB other than VA ∩
UB (so that she learns nothing about the location of
Bob’s units).

Given VA ∩ UB Alice’s machine can correctly render the
cells in VA, as required. Likewise, we want Bob to learn
VB ∩ UA, namely Alice’s units in Bob’s visibility regions,
and this will be accomplished by running the protocol in
the reverse direction.

The problem of computing VA ∩ UB subject to the two
constraints above is called oblivious set intersection and
many protocols for this problem have been proposed [10],
[20], [14], [5], [13], [17], [18], [8], as discussed in Section X.
For each cell in the intersection, Alice wants to learn
information about Bob’s units in that cell. We encapsulate
this as a function fB : UB → D for some data domain D.
We would like a protocol whereby Alice learns the value of
fB on VA ∩ UB but not anything about UB\VA, and Bob
learns nothing about Alice’s units.

Since we are mostly concerned with eavesdropping attacks
we will assume a passive threat model (a.k.a. honest but
curious) meaning that Alice and Bob will execute the protocol
faithfully, but they wish to gain information by looking at
the flows. Formally, the security requirement is that

1) Given UB there is a simulator that simulates Bob’s
view of the protocol (and therefore Bob learns nothing
from the interaction with Alice), and

2) Given VA and VA ∩ UB there is a simulator that
simulates Alice’s view of the protocol (and therefore
Alice learns nothing from the interaction other than
VA ∩ UB).

A protocol satisfying these two requirement is said to be
private for passive adversaries.

B. Oblivious Function Evaluation

We found that a good starting point for our settings is an
oblivious intersection protocol due to Jarecki and Liu [18]
which uses oblivious function evaluation as a sub-protocol
(a related protocol is presented in [8]). We describe the
protocol while adapting and optimizing it to our settings.

Oblivious function evaluation is defined with respect to
a keyed function ok(v) that uses a secret key k to map a
value v to some domain. Bob holds the secret key k. An
oblivious function evaluation protocol is a way for Alice
to learn {ok(v) : v ∈ VA}, without learning ok(w) for any
w /∈ VA, and without Bob learning anything about VA.

For our function ok(v), we choose a group G of prime
order q (in particular, a subgroup of the points on an elliptic
curve) and a hash function H1 : M → G\{1}. Bob’s key k

is a random integer in [1, q − 1], and the function ok(·) is
defined as:

ok(v) := H1(v)
k ∈ G .

Now, the oblivious function evaluation protocol runs as
follows:

• Alice chooses a random integer r ∈ [1, q − 1]
and sends x := H1(v)r to Bob;

• Bob responds with y := x
k = H1(v)rk;

• Alice computes ok(v) = y
r−1

.

Simple variants of this can be more efficient for certain
groups G. For example, Alice can blind v in step (1) as
H1(v) · gr for some generator g. She unblinds y in step (3)
as yr

−1
/g

r. This variant improves efficiency of step (1) since
Alice’s exponentiations are relative to a fixed base g.

Theorem 7.1: If the Computational Diffie-Hellman (CDH)
assumption holds in G then the protocol above is a secure
oblivious function evaluation protocol when H1 is modeled
as a random oracle.

Proof: Bob sees only one random group element from
Alice, so his view of the interaction can be simulated by
choosing a random element in G. Hence, Bob learns nothing
from the interaction. Now, suppose Alice and Bob run the
protocol on VA so that Alice learns {ok(v) : v ∈ VA}.
Suppose Alice can find some w �∈ VA so that she can compute
ok(w). We show how to use Alice to solve a CDH challenge,
which is compute h

k given g, g
k
, h. We run a simulation

with the random oracle rigged to give g
sv on v ∈ VA and

h
sw on w ∈ M\VA, where the simulator knows the values

sv and sw.

unit key:

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

For one unit

BobAlice

For each pair of opposing players (let’s call them Alice
and Bob), Alice can see some of Bob’s units (those close to
her own units), but not others. We want Bob to send Alice
data on those units that she can see, but not on those units
that she cannot see. The problem is that Bob doesn’t know,
and shouldn’t be allowed to know, which of his units Alice
can see. A solution to this problem is to use an oblivious
intersection protocol.

A. Oblivious Set Intersection

Let M be the set of all cells on the map. Each cell may
contain units, buildings and other objects; we will refer
to these generically as “units”. Alice has units scattered
across the map and each unit has a visibility radius. Taking
the union of all of Alice’s visibility regions gives the set
VA ⊆ M of cells that Alice can see. Let UB ⊆ M denote
the set of map cells containing Bob’s units.

The game needs to show Alice all the units belonging to
any player within her visibility region. To get Bob’s data,
Alice’s machine needs to determine VA ∩ UB subject to two
constraints stated informally as:

1) Bob should learn nothing about VA (so that he learns
nothing about the location of Alice’s units), and

2) Alice should learn nothing about UB other than VA ∩
UB (so that she learns nothing about the location of
Bob’s units).

Given VA ∩ UB Alice’s machine can correctly render the
cells in VA, as required. Likewise, we want Bob to learn
VB ∩ UA, namely Alice’s units in Bob’s visibility regions,
and this will be accomplished by running the protocol in
the reverse direction.

The problem of computing VA ∩ UB subject to the two
constraints above is called oblivious set intersection and
many protocols for this problem have been proposed [10],
[20], [14], [5], [13], [17], [18], [8], as discussed in Section X.
For each cell in the intersection, Alice wants to learn
information about Bob’s units in that cell. We encapsulate
this as a function fB : UB → D for some data domain D.
We would like a protocol whereby Alice learns the value of
fB on VA ∩ UB but not anything about UB\VA, and Bob
learns nothing about Alice’s units.

Since we are mostly concerned with eavesdropping attacks
we will assume a passive threat model (a.k.a. honest but
curious) meaning that Alice and Bob will execute the protocol
faithfully, but they wish to gain information by looking at
the flows. Formally, the security requirement is that

1) Given UB there is a simulator that simulates Bob’s
view of the protocol (and therefore Bob learns nothing
from the interaction with Alice), and

2) Given VA and VA ∩ UB there is a simulator that
simulates Alice’s view of the protocol (and therefore
Alice learns nothing from the interaction other than
VA ∩ UB).

A protocol satisfying these two requirement is said to be
private for passive adversaries.

B. Oblivious Function Evaluation

We found that a good starting point for our settings is an
oblivious intersection protocol due to Jarecki and Liu [18]
which uses oblivious function evaluation as a sub-protocol
(a related protocol is presented in [8]). We describe the
protocol while adapting and optimizing it to our settings.

Oblivious function evaluation is defined with respect to
a keyed function ok(v) that uses a secret key k to map a
value v to some domain. Bob holds the secret key k. An
oblivious function evaluation protocol is a way for Alice
to learn {ok(v) : v ∈ VA}, without learning ok(w) for any
w /∈ VA, and without Bob learning anything about VA.

For our function ok(v), we choose a group G of prime
order q (in particular, a subgroup of the points on an elliptic
curve) and a hash function H1 : M → G\{1}. Bob’s key k

is a random integer in [1, q − 1], and the function ok(·) is
defined as:

ok(v) := H1(v)
k ∈ G .

Now, the oblivious function evaluation protocol runs as
follows:

• Alice chooses a random integer r ∈ [1, q − 1]
and sends x := H1(v)r to Bob;

• Bob responds with y := x
k = H1(v)rk;

• Alice computes ok(v) = y
r−1

.

Simple variants of this can be more efficient for certain
groups G. For example, Alice can blind v in step (1) as
H1(v) · gr for some generator g. She unblinds y in step (3)
as yr

−1
/g

r. This variant improves efficiency of step (1) since
Alice’s exponentiations are relative to a fixed base g.

Theorem 7.1: If the Computational Diffie-Hellman (CDH)
assumption holds in G then the protocol above is a secure
oblivious function evaluation protocol when H1 is modeled
as a random oracle.

Proof: Bob sees only one random group element from
Alice, so his view of the interaction can be simulated by
choosing a random element in G. Hence, Bob learns nothing
from the interaction. Now, suppose Alice and Bob run the
protocol on VA so that Alice learns {ok(v) : v ∈ VA}.
Suppose Alice can find some w �∈ VA so that she can compute
ok(w). We show how to use Alice to solve a CDH challenge,
which is compute h

k given g, g
k
, h. We run a simulation

with the random oracle rigged to give g
sv on v ∈ VA and

h
sw on w ∈ M\VA, where the simulator knows the values

sv and sw.

For each pair of opposing players (let’s call them Alice
and Bob), Alice can see some of Bob’s units (those close to
her own units), but not others. We want Bob to send Alice
data on those units that she can see, but not on those units
that she cannot see. The problem is that Bob doesn’t know,
and shouldn’t be allowed to know, which of his units Alice
can see. A solution to this problem is to use an oblivious
intersection protocol.

A. Oblivious Set Intersection

Let M be the set of all cells on the map. Each cell may
contain units, buildings and other objects; we will refer
to these generically as “units”. Alice has units scattered
across the map and each unit has a visibility radius. Taking
the union of all of Alice’s visibility regions gives the set
VA ⊆ M of cells that Alice can see. Let UB ⊆ M denote
the set of map cells containing Bob’s units.

The game needs to show Alice all the units belonging to
any player within her visibility region. To get Bob’s data,
Alice’s machine needs to determine VA ∩ UB subject to two
constraints stated informally as:

1) Bob should learn nothing about VA (so that he learns
nothing about the location of Alice’s units), and

2) Alice should learn nothing about UB other than VA ∩
UB (so that she learns nothing about the location of
Bob’s units).

Given VA ∩ UB Alice’s machine can correctly render the
cells in VA, as required. Likewise, we want Bob to learn
VB ∩ UA, namely Alice’s units in Bob’s visibility regions,
and this will be accomplished by running the protocol in
the reverse direction.

The problem of computing VA ∩ UB subject to the two
constraints above is called oblivious set intersection and
many protocols for this problem have been proposed [10],
[20], [14], [5], [13], [17], [18], [8], as discussed in Section X.
For each cell in the intersection, Alice wants to learn
information about Bob’s units in that cell. We encapsulate
this as a function fB : UB → D for some data domain D.
We would like a protocol whereby Alice learns the value of
fB on VA ∩ UB but not anything about UB\VA, and Bob
learns nothing about Alice’s units.

Since we are mostly concerned with eavesdropping attacks
we will assume a passive threat model (a.k.a. honest but
curious) meaning that Alice and Bob will execute the protocol
faithfully, but they wish to gain information by looking at
the flows. Formally, the security requirement is that

1) Given UB there is a simulator that simulates Bob’s
view of the protocol (and therefore Bob learns nothing
from the interaction with Alice), and

2) Given VA and VA ∩ UB there is a simulator that
simulates Alice’s view of the protocol (and therefore
Alice learns nothing from the interaction other than
VA ∩ UB).

A protocol satisfying these two requirement is said to be
private for passive adversaries.

B. Oblivious Function Evaluation

We found that a good starting point for our settings is an
oblivious intersection protocol due to Jarecki and Liu [18]
which uses oblivious function evaluation as a sub-protocol
(a related protocol is presented in [8]). We describe the
protocol while adapting and optimizing it to our settings.

Oblivious function evaluation is defined with respect to
a keyed function ok(v) that uses a secret key k to map a
value v to some domain. Bob holds the secret key k. An
oblivious function evaluation protocol is a way for Alice
to learn {ok(v) : v ∈ VA}, without learning ok(w) for any
w /∈ VA, and without Bob learning anything about VA.

For our function ok(v), we choose a group G of prime
order q (in particular, a subgroup of the points on an elliptic
curve) and a hash function H1 : M → G\{1}. Bob’s key k

is a random integer in [1, q − 1], and the function ok(·) is
defined as:

ok(v) := H1(v)
k ∈ G .

Now, the oblivious function evaluation protocol runs as
follows:

• Alice chooses a random integer r ∈ [1, q − 1]
and sends x := H1(v)r to Bob;

• Bob responds with y := x
k = H1(v)rk;

• Alice computes ok(v) = y
r−1

.

Simple variants of this can be more efficient for certain
groups G. For example, Alice can blind v in step (1) as
H1(v) · gr for some generator g. She unblinds y in step (3)
as yr

−1
/g

r. This variant improves efficiency of step (1) since
Alice’s exponentiations are relative to a fixed base g.

Theorem 7.1: If the Computational Diffie-Hellman (CDH)
assumption holds in G then the protocol above is a secure
oblivious function evaluation protocol when H1 is modeled
as a random oracle.

Proof: Bob sees only one random group element from
Alice, so his view of the interaction can be simulated by
choosing a random element in G. Hence, Bob learns nothing
from the interaction. Now, suppose Alice and Bob run the
protocol on VA so that Alice learns {ok(v) : v ∈ VA}.
Suppose Alice can find some w �∈ VA so that she can compute
ok(w). We show how to use Alice to solve a CDH challenge,
which is compute h

k given g, g
k
, h. We run a simulation

with the random oracle rigged to give g
sv on v ∈ VA and

h
sw on w ∈ M\VA, where the simulator knows the values

sv and sw.

For each pair of opposing players (let’s call them Alice
and Bob), Alice can see some of Bob’s units (those close to
her own units), but not others. We want Bob to send Alice
data on those units that she can see, but not on those units
that she cannot see. The problem is that Bob doesn’t know,
and shouldn’t be allowed to know, which of his units Alice
can see. A solution to this problem is to use an oblivious
intersection protocol.

A. Oblivious Set Intersection

Let M be the set of all cells on the map. Each cell may
contain units, buildings and other objects; we will refer
to these generically as “units”. Alice has units scattered
across the map and each unit has a visibility radius. Taking
the union of all of Alice’s visibility regions gives the set
VA ⊆ M of cells that Alice can see. Let UB ⊆ M denote
the set of map cells containing Bob’s units.

The game needs to show Alice all the units belonging to
any player within her visibility region. To get Bob’s data,
Alice’s machine needs to determine VA ∩ UB subject to two
constraints stated informally as:

1) Bob should learn nothing about VA (so that he learns
nothing about the location of Alice’s units), and

2) Alice should learn nothing about UB other than VA ∩
UB (so that she learns nothing about the location of
Bob’s units).

Given VA ∩ UB Alice’s machine can correctly render the
cells in VA, as required. Likewise, we want Bob to learn
VB ∩ UA, namely Alice’s units in Bob’s visibility regions,
and this will be accomplished by running the protocol in
the reverse direction.

The problem of computing VA ∩ UB subject to the two
constraints above is called oblivious set intersection and
many protocols for this problem have been proposed [10],
[20], [14], [5], [13], [17], [18], [8], as discussed in Section X.
For each cell in the intersection, Alice wants to learn
information about Bob’s units in that cell. We encapsulate
this as a function fB : UB → D for some data domain D.
We would like a protocol whereby Alice learns the value of
fB on VA ∩ UB but not anything about UB\VA, and Bob
learns nothing about Alice’s units.

Since we are mostly concerned with eavesdropping attacks
we will assume a passive threat model (a.k.a. honest but
curious) meaning that Alice and Bob will execute the protocol
faithfully, but they wish to gain information by looking at
the flows. Formally, the security requirement is that

1) Given UB there is a simulator that simulates Bob’s
view of the protocol (and therefore Bob learns nothing
from the interaction with Alice), and

2) Given VA and VA ∩ UB there is a simulator that
simulates Alice’s view of the protocol (and therefore
Alice learns nothing from the interaction other than
VA ∩ UB).

A protocol satisfying these two requirement is said to be
private for passive adversaries.

B. Oblivious Function Evaluation

We found that a good starting point for our settings is an
oblivious intersection protocol due to Jarecki and Liu [18]
which uses oblivious function evaluation as a sub-protocol
(a related protocol is presented in [8]). We describe the
protocol while adapting and optimizing it to our settings.

Oblivious function evaluation is defined with respect to
a keyed function ok(v) that uses a secret key k to map a
value v to some domain. Bob holds the secret key k. An
oblivious function evaluation protocol is a way for Alice
to learn {ok(v) : v ∈ VA}, without learning ok(w) for any
w /∈ VA, and without Bob learning anything about VA.

For our function ok(v), we choose a group G of prime
order q (in particular, a subgroup of the points on an elliptic
curve) and a hash function H1 : M → G\{1}. Bob’s key k

is a random integer in [1, q − 1], and the function ok(·) is
defined as:

ok(v) := H1(v)
k ∈ G .

Now, the oblivious function evaluation protocol runs as
follows:

• Alice chooses a random integer r ∈ [1, q − 1]
and sends x := H1(v)r to Bob;

• Bob responds with y := x
k = H1(v)rk;

• Alice computes ok(v) = y
r−1

.

Simple variants of this can be more efficient for certain
groups G. For example, Alice can blind v in step (1) as
H1(v) · gr for some generator g. She unblinds y in step (3)
as yr

−1
/g

r. This variant improves efficiency of step (1) since
Alice’s exponentiations are relative to a fixed base g.

Theorem 7.1: If the Computational Diffie-Hellman (CDH)
assumption holds in G then the protocol above is a secure
oblivious function evaluation protocol when H1 is modeled
as a random oracle.

Proof: Bob sees only one random group element from
Alice, so his view of the interaction can be simulated by
choosing a random element in G. Hence, Bob learns nothing
from the interaction. Now, suppose Alice and Bob run the
protocol on VA so that Alice learns {ok(v) : v ∈ VA}.
Suppose Alice can find some w �∈ VA so that she can compute
ok(w). We show how to use Alice to solve a CDH challenge,
which is compute h

k given g, g
k
, h. We run a simulation

with the random oracle rigged to give g
sv on v ∈ VA and

h
sw on w ∈ M\VA, where the simulator knows the values

sv and sw.

unit key:

H1(v)
k = H1(v)

rkr−1

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Multi-units

Alice Bob

vr11 , . . . , vrnn UBVA

k

encrypted chunks from

vkr11 , . . . , vkrnn

UB

Figure 20. Computing VA ∩ UB where VA = {v1, . . . , vn}

Note that we must ensure that the length of the
encryption of fB(u) not leak information about fB(u).
Our system ensures this by breaking fB(u) into fixed
sized chunks (possibly padding the last chunk) and
encrypting each chunk separately. The chunks from all
|UB | ciphertexts are then sent to Alice in a random
permuted order.

3) Alice then uses the oblivious function evaluation
protocol with Bob to obtain yv := ok(v) for all v ∈ VA.
Note that Bob learns nothing about VA.

4) For each yv Alice computes kv ← H2(yv) and tests
if one of the ciphertexts received from Bob decrypts
correctly under yv (i.e. the decryption algorithm does
not return ⊥). If so then v ∈ VA ∩ UB and she learns
fB(v), as required.

D. Chaff

The basic protocol leaks to Bob the number of cells in
Alice’s visibility set VA. It leaks to Alice the sum of the
lengths of fB(u) for u ∈ UB which reveals information
about the total number of units that Bob has. While it is
not possible to completely hide the total number of Bob’s
units, Bob can reduce the amount of information that Alice
infers by adding chaff in the form of random, meaningless
data chunks. Alice can’t tell the difference between these
random chunks and units that she can’t see so she only
knows an upper bound of the number of Bob’s units. Since
these chunks are random, they cost almost nothing other
than the bandwidth they consume.

Conversely, Alice can hide the size of her visibility map by
sending meaningless, random queries. Bob won’t be able to
tell the difference between these random queries and Alice’s
real visibility queries. However, Bob must respond to all
queries, so the chaff increases his workload.

E. Hypergrids

Visibility regions are almost always large, continuous
shapes rather than disconnected point sets. To take advantage
of this property, we can construct multiple levels of grid cells
(“hypergrids”), each one coarser than the last. For example,
we could divide the grid into 1× 1, 2× 2, 4× 4 and 8× 8
tiles. Then Alice can decompose VA into a union of grid
cells and hypergrid cells in order to minimize computation

and bandwidth consumption. That is, if Alice can see all
the tiles in some hypergrid cell, she sends a query for the
entire cell instead of for each of the tiles inside it. As a
result, Alice will send a number of queries proportional to
the perimeter of VA rather than its area. Figure 21 shows how
hypergrids reduce the number of elements in the visibility
set by a factor of 6 during the game. The top line refers to
the total number of visible cells. The bottom line shows that
number of visible hypergrid cells where each tile contains a
number of adjacent cells.

With a straightforward implementation, Bob would need to
encrypt all his units’ data for each level of the hypergrid. But
this is not necessary. For each non-empty hypergrid cell, Bob
simply encrypts the keys for the grid cells containing those
units. Furthermore, Bob’s units are likely to be clustered
together, so they will occupy relatively few hypergrid cells.
Even though we increase the expense of units, hypergrids
are almost always a worthwhile trade-off: players will have
vision of more tiles than they have units in, and sending data
for a unit is less expensive than querying ok.

The hypergrid technique works especially well if there are
small areas of the map that provide great visibility, such as
StarCraft II’s Xel’naga towers. By making the tower’s radius
a hypergrid cell, Alice will only need to send one query for
all the territory revealed by the tower.

N
um

be
r o

f v
is

ib
le

 c
el

ls

0

1000

2000

3000

4000

5000

duration (sec)
0 100 200 300 400 500 600 700 800 900

Standard grid Hypertiled grid

Figure 21. Starcraft 2 visible cells vs. hypergrid cells (10 second buckets)

F. Multiplayer

When there are more than two players, the cost of
the protocol remains reasonable. The queries H1(v)r are
independent of the player being queried, so Alice can just

Alice Bob

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Chaff

• The basic protocol leaks information

• The number of Alice visible cell

• The number of bob unit (nb encrypted chunk)

• Both are resolved by adding a chaff

• Bob and Alice add random values that “pad” the data

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Challenge

Design a protocol that is fast enough so the added
game latency is imperceptible to users.

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Establishing a baseline

Establishing a baseline

http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Methodology

• 1000 Starcraft 2 replays from
pro-gamer

• Game duration

• Number of units by players

• Number of visible cells

• Number of actions by
seconds

• Map playable size:

• min 15180 cells

• max 24640 cells

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Analysis difficulty

1. Replays use a proprietary file format (MQP)

• Wrote a custom parser

2. Replay only record players actions

• Wrote a minimal game engine

• return an upper-approximation

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Game duration
nu

m
be

r o
f g

am
es

0

500

1000

1500

2000

duration (sec)
500 1000 1500 2000

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Actions per second
Ac

tio
ns

 p
er

 s
ec

on
d

0

1

2

3

4

5

6

duration (sec)
200 400 600 800 1000 1200 1400 1600 1800

Game related actions
Camera related actions
Total actions

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Units by duration
nu

m
be

r o
f u

ni
ts

0

50

100

150

duration (sec)
100 200 300 400 500 600 700 800 900

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Map cell visible by duration
N

um
be

r o
f v

is
ib

le
 c

el
ls

0

1000

2000

3000

4000

5000

duration (sec)
0 100 200 300 400 500 600 700 800 900

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

• Hypergrid: 4 grid
instead of 1

• 1x1cells

• 2x2 cells

• 3x3 cells

• 4x4 cells

• Lest visible cells

• 4 times more units

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

• Hypergrid: 4 grid
instead of 1

• 1x1cells

• 2x2 cells

• 3x3 cells

• 4x4 cells

• Lest visible cells

• 4 times more units

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

• Hypergrid: 4 grid
instead of 1

• 1x1cells

• 2x2 cells

• 3x3 cells

• 4x4 cells

• Lest visible cells

• 4 times more units

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

• Hypergrid: 4 grid
instead of 1

• 1x1cells

• 2x2 cells

• 3x3 cells

• 4x4 cells

• Lest visible cells

• 4 times more units

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

• Hypergrid: 4 grid
instead of 1

• 1x1cells

• 2x2 cells

• 3x3 cells

• 4x4 cells

• Lest visible cells

• 4 times more units

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

• Hypergrid: 4 grid
instead of 1

• 1x1cells

• 2x2 cells

• 3x3 cells

• 4x4 cells

• Lest visible cells

• 4 times more units

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

• Hypergrid: 4 grid
instead of 1

• 1x1cells

• 2x2 cells

• 3x3 cells

• 4x4 cells

• Lest visible cells

• 4 times more units

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Impact of the hypertiled grid
N

um
be

r o
f v

is
ib

le
 c

el
ls

0

1000

2000

3000

4000

5000

duration (sec)
0 100 200 300 400 500 600 700 800 900

Standard grid Hypertiled grid

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Open-Conflict Benchmark

broadcast them to all players at once. Similarly, Bob’s data
sections are independent of the player who is querying, so
Bob can just broadcast them. So the only per-opponent work
that Bob needs to do is to compute ok, and the only per-
opponent work that Alice needs to do is to unblind and
interpret the results.

VII. OPENCONFLICT

We built a prototype of the set intersection protocol
in section VI, which we call OpenConflict, in order to
demonstrate its feasibility. Our prototype does not yet
incorporate all the tricks mentioned in the previous section,
but it is enough to demonstrate that the technique is feasible
in real life.

We first implemented OpenConflict using standard crypto-
graphic components, and benchmarked it on a Core i5 660
running at 3.33 GHz. With the standard NIST elliptic curves,
a single exponentiation took on the order of a millisecond.
With 200 visibility hypertiles and 150 units per player, each
player would take approximately 750 core-milliseconds just
for the exponentiations – completely unacceptable.

Many newer elliptic-curve implementations are available
that reduce exponentiation times by an order of magnitude
or more, which is beginning to become feasible. However,
we realized that we do not need the security level that these
implementations provide, and could reduce the running times
by another factor of 5 or so by using smaller parameters.
Taking a hint from Dan Bernstein’s Curve25519 software [?],
we chose to use the Montgomery curve

y
2 = x

3 + ax
2 + x (mod p)

where a := 6366 and p := 2127 − 1.
The cardinality of this curve is 16·qcurve, where qcurve is a

prime slightly larger than 2123, and the cardinality of its twist
is 16 · qtwist, where qtwist is a prime slightly smaller than
2123. Because p is a Mersenne prime, this curve supports a
very efficient implementation; exponentiations on it take only
11-12µs. Because it is a Montgomery curve, exponentiations
are computed using the x-coordinate only, which simplifies
the implementation and saves bandwidth.

Whether a point is on the curve or on the twist gives
away information, so we decided arbitrarily to hash points
to the twist. In order to implement the map from grid cells
to points on the twist, we first map the points to a number
k /∈ {−1, 0, 1} mod 2127−1. We then compute

x :=
a

k2 − 1
and w := −a− x =

−k2a

k2 − 1

Note that w2 + aw + 1 = x2 + ax+ 1, so that

(x3 + ax2 + x)(w3 + aw2 + w)
= xw(x2 + ax+ 1)2

= −
�

ka(x2+ax+1)
k2−1

�2

Since −1 is not square mod p, either x3 + ax2 + x or
w3 + aw2 + w must be square and the other non-square
(neither can be 0, because x �= 0, w �= 0 and a2 − 4 is not
square mod p. Therefore either x or w is on the curve, and
the other is on the twist. Since this map is invertible with
constant probability, it can be substituted for the random-
oracle hash in the previous section without damaging the
security proof.

To avoid leaking information from the cofactor of 16, we
multiply r, r−1 and k by 16 before using them. This results
in uniformly random points on the prime-order subgroup of
the twist.

For the stream cipher and to generate random numbers, we
used ChaCha/12 [?]. This cipher is extremely fast and adds
negligibly to the runtime. For hashing, we used SHA256.

A. Measurements
We benchmarked the software on a Core i5 660 at

3.33 GHz, a dual-core hyperthreaded processor. We only
used a single core, expecting that the other cores would
be taken up by game logic; however, we observed that the
code threads and hyper-threads very well, so a game which
is willing to devote more cores to cryptography would see
considerable speedups, and in particular reduced latency.

v ↓ u → 100 200 300 400 500
100 5ms 6ms 8ms 9ms 11ms
200 8ms 9ms 11ms 12ms 14ms
300 11ms 13ms 14ms 16ms 17ms
400 14ms 16ms 17ms 19ms 20ms
500 17ms 19ms 20ms 22ms 24ms

Table III
OPENCONFLICT RUNTIMES

The benchmarks in table III show timings for the entire
OpenConflict protocol for different numbers u of units and v

of visible grid hypertiles. We see that units cost about 15µs,
and visibility tiles cost about 30µs. This time is distributed
across Alice and Bob’s CPUs, so with careful pipelining the
latency may be less than the numbers shown.

B. Security
To assess the viability of weak parameters, we im-

plemented a curve of approximately 258 points over the
Mersenne prime 261 − 1. This prime is the largest Mersenne
prime where products require a single 64-by-64-bit multi-
plication. The best known algorithms take O(

√
q) time to

solve discrete logarithms, so this curve should be in reach.
We implemented a simple multithreaded baby-step/giant-step
cracker for this curve, and found that after precomputation,
the median time to find discrete logs using our test machine
was 12 seconds. This is clearly too weak, but it allows us to
estimate cracking times for curves over 289 − 1 and 2127 − 1
at 72 machine-days and 3200 machine-years, respectively.

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Conclusion

• Developed a generic method to perform memory
based attack

• Established a defense performance baseline based on
real world data

• Designed and implemented an oblivious set
intersection protocol that prevents passive attacks

• Future work: defending on active attacks

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Thank you !

Paper and video available from http://ly.tl/p19

Twitter: @elie

http://elie.im
http://elie.im
http://ly.tl/t10
http://ly.tl/t10

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Finding units information

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

When things become harder

• Unit lists are very small

• Visualization won’t work this time to find it :(

• Solely based on memory shape analysis algorithms

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Stack detection heuristics

• Only one new integer by unit

• Each integer is a valid pointer

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Unit hack Step

Game memory

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Unit hack Step

Game memory

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Unit hack Step

Game memory

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Unit hack Step

Game memory

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Unit hack Step

Game memory

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Unit hack Step

Game memory

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Unit hack Step

Game memory

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Unit Hack shape

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Understanding unit structure

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Understanding unit structure

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Understanding unit structure

make it move

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Understanding unit structure

make it move

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Understanding unit structure

make it move

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

make it bleed

Understanding unit structure

make it move

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

make it bleed

Understanding unit structure

make it move

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Kartograph performance

Figure 13. Heatmap view of the cumulative visibility map used by Supreme
Commander 2

wildly from one game to another.
The following examples illustrate how diverse the data

structure are:
• Age of Empires 3 As shown in figure 12, Age of

empires 3 use separate structures to store resource
information and visibility information. The information
visible to each player is encoded using a bit fields.

• Supreme Commander 2 encodes the visibility as a
short integer, representing how many units are able
to see a given cell of the map. An example of this
cumulative visibility map is visible in figure 13.

• Civilization 4 uses a filter based approach: its visibility
map contains for each cell a color that is applied by the
game to create the fog of war. Each cell’s color filter
is encoded as a 32-bit integer, with 8 most significant
bits used an alpha channel. Accordingly, unexplored
cells contain a straight black mask (0xFF000000),
and explored but currently unobserved cells are masked
with a gray mask (0xFF6D6D6D).

B. Unit analysis
While the unit list is an order of magnitude smaller than the

map, it is still possible to quickly narrow down its location
as shown in Table II. As we find more units the number
of possible locations for the unit list shrinks rapidly. We
expected to see units stored in a linked list, which is far from
trivial to reverse-engineer. However, most games use a stack,
either with pointers to units (e.g. Warcraft 3 and Starcraft
2), or with a pointer and a unit ID (e.g. Age of Empires
3). Consequently, instead of using the complex linked-list
analysis tools we developed originally, we ended using the
simplified algorithm described in the previous section. The
last point worth mentioning is that unit hit points are often
obfuscated. This is done to prevent an attacker from searching
memory for the hit point value shown on screen. However,
our Adversarial Game Instrumentation technique nullifies
this defense, allowing us to quickly reverse-engineer unit
structures despite simple obfuscation.

C. Using the game as a map hack
Since we know the map structures’ locations and format,

we can take Kartograph one step further and trick the game

Game Unit 1 Unit 2 Unit 3 Unit 4 Unit 5
Supreme Commander 2 176454 13546 428 55 12
Age of empire 3 3443 177 48 29 10

Table II
NUMBER OF POSSIBLE LOCATIONS FOR THE UNIT LIST

Figure 14. Partial rewrite of the Civilization 4 visibility filter map. The
white rectangle is the allowed visibility region while the thick visibility
rectangle was added by Kartograph.

into displaying the entire map and lifting the fog of war. For
example, in Supreme Commander 2 we can lift off all the
visibility restriction by changing all the 0’s in the cumulative
game map into a positive number. Because with Kartograph
we are able to rewrite precisely the map structure with a
meaningful value, we can not only turn the game into a map
hack but also create all sorts of strange effects. For instance,
by re-writing only part of the Civilization visibility filter map,
we can selectively reveal only part of the map, as shown in
figure 14. Note that during online play, some games do static
checks on visibility map consistency. In this case, we must
either rewrite network packets, or write the map hack as an
external program that overlays itself on top of the game.

V. PREVENTING PASSIVE MAP HACKS

In the previous sections we discussed Kartograph, an
effective tool for extracting strategic information from game
memory. The attack is passive in that it only extracts
information that the client already has. We now turn to
defending against passive information extraction attacks. We
first define the passive eavesdropper threat model and then
describe OpenConflict, our system that defends against such
attacks. We discuss active attacks in section VIII.

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Age of empire 3 demo

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Kartograph performances

(e.g command id) then we observe a monochrome stripe. If
it holds a counter, we see a gradient and if it is an arbitrary,
random or encrypted value we see a scrambled list of color.
At the very top of the heat-map, Kartograph draws a diff-map
that summarizes which offsets of the packet changed across
the time. The constant offsets are in blue and the changing
ones are in red.

IV. GAME HACKING IN PRACTICE WITH Kartograph
In this section we describe some of the issues we came

across while using Kartograph against popular games. We
also discuss the effectiveness of our memory space reduc-
tion techniques on practical examples. We plan to release
Kartograph at the same time as our cryptographic library
used to defend against it. We analyzed many games, listed in
table I: old games such as Command and Conquer Tiberian
Sun (1999), more recent games such as Wacraft 3 (2003) and
Age of Empires 3 (2005), and the most recent games such
as Supreme Commander 2 (2010) and Starcraft 2 (2010).

A. The visibility map

Game Launch Play Discover Play more
Starcraft 2 850 725 2 1.3
C&C Tiberium Sun 75M 73M 400K 400K
C&C Red Alert 2 101M 100M 935K 915K
C&C Red Alert 3 660M 635M 4.4M 1.6M
Age of Empire 3 245M 243M 2.7M 2.5M
Supreme Commander 2 1.2G 629M 2.5M 1.5M
Civilization IV + ext 340M 293M 2M 1.9M
Anno 1701 432M 413M 1.9M 1.8M
Warcraft 3 129M 124M 1.9M 1.8M

Table I
MAP SIZE REDUCTION

One of the most fascinating things when reverse-
engineering a game is to uncover which data structures
it uses and how the data are stored. In the more than 15
games we reverse engineered, each one had unique structures
and data representations. In particular we analyzed the
Command and Conquer (C&C) serie to see if we could
find a pattern, but it turned out that that these structures
changed radically from one opus to another, probably because
they are using a different game engine. Overall we found
that the representation of map information can be placed
into two broad categories: bitmap representations with
an array that corresponds directly to map data, and the
composite representations which store the map data in
different structures and combines them when rendering. In
either case, table I our reduction algorithm to be efficient,
and quickly reducing the search space for map structures. In
practice this process can be accomplished in under 2 minutes.
There are two difficulties with this method. First, on modern
game this approach requires a lot of memory because we
need to snapshot the entirety of the main module’s memory

User Vision Memory structure

Figure 11. Heatmap view of the Warcraft 3 map structure

map memory structures

Ressources

Visibility

Figure 12. Heatmap view of some of the Age of Empire 3 map structures

that requires twice its memory size because we need to store
each memory address and each memory value. As a result on
games like Supreme Commander 3, we need 1.2 GB for the
game and 2.4 GB for Kartograph. That is why Kartograph
was designed to works on 64-bit Windows only. The second
issue is the way the game allocates resources. In some cases,
memory is allocated in 64 MB chunks, which causes the
heat-map to take a very long time to render. The fact that
game use so much memory makes realtime visualization of
the memory very difficult. We are still experimenting on real
time visualization techniques using Direct3D, with the hope
that this kind of visualization will provide a valuable tool to
understand the game structures.

The bitmap representation.
An example of the bitmap representation used by Warcraft

3 is shown in figure 11. It is easily seen that the information
stored into the bitmap contains the opponents’ buildings,
which are filtered out before being displayed to the user.

Composite representations.
In our experience, composite representations are more

common than simple bitmap representations. These represen-
tations are more difficult, both because the map data is stored
in multiple data structures, and because these structures vary

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Network based maphack

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Rewriting network traffic

• Resync the game or get
caught

• Use LSP (Layer service
provider) to rewrite
network traffic

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Understanding the network traffic

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Understanding the network traffic

Bucket

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Understanding the network traffic

VisualizeBucket

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Understanding the network traffic

Visualize UnderstandBucket

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Understanding the network traffic

Visualize UnderstandBucket Resync

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Civilization 4 vizualization

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

LSP listener

Civilization 4 vizualization

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Buckets

LSP listener

Civilization 4 vizualization

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Bucket visualization

Buckets

LSP listener

Civilization 4 vizualization

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Bucket visualization

Buckets

LSP listener

Civilization 4 vizualization

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Bucket visualization

Buckets

LSP listener

Civilization 4 vizualization
tim

e

Length

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Bucket visualization

Buckets

LSP listener

Civilization 4 vizualization
Trace diff map

tim
e

Length

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Bucket visualization

Buckets

LSP listener

Civilization 4 vizualization
Trace diff map

tim
e

Length

Fixed value

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Bucket visualization

Buckets

LSP listener

Civilization 4 vizualization
Trace diff map

tim
e

Length

Fixed value

Counter value

http://elie.im
http://elie.im

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh OpenConflict http://ly.tl/p19

Bucket visualization

Buckets

LSP listener

Civilization 4 vizualization
Trace diff map

tim
e

Length

Fixed value

Counter value

random /crypted value

http://elie.im
http://elie.im

