OpenConflict Preventing Map Hack in online games Elie Bursztein, Mike Hamburg, Jocelyn Lagarenne, Dan Boneh Stanford University

Welcome to the real world #kartograph / @elie

273 Millions games sold in 2009

Strategy account for 35% of the games sold in 2009

Outline

• Background

- Background
- Memory based map-hack with Kartograph

- Background
- Memory based map-hack with Kartograph
- Defending against map-hack

- Background
- Memory based map-hack with Kartograph
- Defending against map-hack
- Starcraft 2 case study

- Background
- Memory based map-hack with Kartograph
- Defending against map-hack
- Starcraft 2 case study
- Open conflict benchmark

Background

supernatural powers !

- Learn kungfu
- Infinite money
- Xray vision
- god mode

Memory based attack

Memory

Memory based attack

Memory

Modification

Memory based attack

Memory

Modification

Benefits (fast and furious)

- Generic
- Fast
- Invisible

Drawbacks: Needle in a Haystack

Resources

1

111

...

12)

F . F

Tankbuster \$ 300 (2) 0:05 Anti-Armor Steely-cold warriors whose personal plasma-cutter cannons can slice through enemy armor.

FF FF

Resources

1

111

...

12x

1.1

Tankbuster \$ 300 (2) 0:05 Anti-Armor Steely-cold warriors whose personal plasma-cutter cannons can slice through enemy armor.

U.S.

4650

FF FF

Building

1

110

Tankbuster \$ 300 (2) 0:05 Anti-Armor Steely-cold warriors whose personal plasma-cutter cannons can slice through enemy armor.

FF FF

Resources

Resources

units

Resources

units

map

What is a map hack?

What is a map hack?

Defeating security via obscurity

- Find the information hidden by the game
- Understand the data structures
- Abuse this knowledge

What is Kartograph ?

- Memory analysis techniques
- Visualization techniques

Reduce haystack

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh

Reduce Find haystack

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh

OpenConflict

Reduce Find Understand haystack

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh

OpenConflict

ReduceFindUnderstandRewritehaystack

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh

OpenConflict

Acquiring game memory

Game memory

Acquiring game memory

Game memory

Game memory

Step I play

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh

Acquiring the game's memory

Step I Removing unrelated memory

🔤 logWindows	2- Kartograph			= 0 X
	File Help			
		Search Inew Scan Match: 131741696 First next undo Read By Int unsigned Map Hack Frequence Hack srap Shot Manage Snapshot Ø Normal Mixed Unit Hack Main Module Size 1.82 Gb Physice Memory size 629.28 Mb	Address Value Protection	
	Step 2 (UNCHANGE)Now, try everything in the reveal the map	e game, increase ressources etc. BUT don't		

Step 2 Discovering the map and keeping relevant memory

🛃 logWindows	🚰 Kartograph			= □ X
	File Help			
	File Help 1. Choose your process to fuzz: Choose SupremoComm Get map info Launch Execute Execute Execute Execute Execute ReadOnly ReadWrite Writecopy	Search Exact value Inew Scan Match: 129150053 Inst. next Read By Int Instigned Map Hack Frequence Hack Instigned Manage Snapishot Manage Snapishot Man Module Size 1.82 Gb Private Memory size 629.28 Mb Scanned Memory Size 492.67 Mb	Address Value Pr	tection
	Step 3 (CHANGE)Now, STOP everything, U square representing 1/4 of the total	Use a unit to discover the map. Try to do a map		

Step 3 Removing more unrelated memory

📴 logWindows	🛃 Kartograph			<u> </u>
	File Help		1	
	1. Choose your process to fuzz.	Search	Addressa Value	Protection
	Chase SupremoComm	Exact value I new Scan Match: 669673	1.000	
	Get map info	first rent undo		
	Launch	Read By Int		
		Map Hadk Frequence Hadk snap Shot Manage Snapshot		
	Execute Execute_Read	Normal Mixed Unit Hack		
	Execute ReadWrite			
	ReadOnly ReadWite	Main Module Size 1.82 Gb Private Memory size 629.28 Mp		
	Wifecopy	Scanned Memory Size 2.55 Mb		
	Step 4			
	(UNCHANGE)Now, like in step 2 try to	do everything except discovering the map Value		
		OK Cancel		
		10		

Memory reduction algorithm efficiency

1500

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh

OpenConflict

Step 4 Finding the map in the remaining memory

Working assumption

Working assumption

CqWindows	- Kartograph			
	File Help			
	1. Choose your process to fuzz: Choose SupromeComm Get map info Launch Execute Execute_Read	Search Exact value	Addresa Value Protectio	21
		Main Module Size 1.82 Gb Private Memory Size 1.30 Mb Scanned Memory Size 1.30 Mb along YES shot ? No		

Step 5 Isolating the potential map

Step 6 Understanding the map's structure

Step 8 Rewriting game memory for fun and profit

Starcraft 2 mini map

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh

OpenConflict

Starcraft 2 mini map

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh

Unexpected effects

Defense requirements

The passive eavesdropping adversary

- Complete control of his machine
- Can understand the game memory structure
- Can identify and parse any data structure

Attacker objective definition

We say that a passive attacker defeats the game if the attacker can write a program P that reveals information about the opponent beyond what is revealed by the game's rules. Otherwise we say that the game is secure against a passive adversary.

Making games secure

 Use two-party (multi-party) cryptography protocol to ensure that the memory contains only the data the user need

Alice

Bob

Alice Va

Bob

- Bob learn nothing about Va
- * Alice learn nothing about Ub other than Va $\cap Ub$

- Bob learn nothing about Va
- Alice learn nothing about Ub other than $Va \cap Ub$

Computing with these constraints is called the oblivious intersection set problem

Chosen oblivisous intersection protocol

- Due to Jarecki and Liu
- Use an oblivious function evaluation as sub-protocol
- Adapted and optimized for our problem

Alice

unit key: $o_k(v) := H_1(v)^k \in \mathbb{G}$

Bob

Alice

Bob

 $H_1(v)^r$

 $H_1(v)^{rk}$

$$H_1(v)^k = H_1(v)^{rkr^{-1}} - H_1(v)^{rk}$$

Multi-units

 $V_A \quad \underbrace{v_1^{r_1}, \dots, v_n^{r_n}}_{U_B} \quad U_B$ $v_1^{kr_1},\ldots,v_n^{kr_n}$

k

Bob

- The basic protocol leaks information
 - The number of Alice visible cell
 - The number of bob unit (nb encrypted chunk)
- Both are resolved by adding a chaff
 - Bob and Alice add random values that "pad" the data

Design a protocol that is fast enough so the added game latency is imperceptible to users.

REPLAYS

ECENT	NAME
IULTIPLAYER	Dig Site (2)
ERSUS A.I.	Colony 426
HALLENGE	Monsoon R Arakan Citad
	Typhon 🔀 Kulas Ravine

DATE
Nov 12, 2010 10:14:58 PM
Nov 12, 2010 9:59:18 PM
Nov 12, 2010 9:31:51 PM
Nov 12, 2010 8:55:01 PM
Nov 12, 2010 8:16:16 PM
Nov 12, 2010 7:23:09 PM
Nov 12, 2010 6:43:09 PM
Nov 12, 2010 6:09:34 PM
Nov 8, 2010 10:54:37 PM
Nov 8, 2010 9:51:55 PM

DETAILS

Dig Site

DURATION: 19:41 VERSION: 1.1.3.16939

bitwise - Protoss Colaldor - Terran Light - Zerg nomadicpuma - Protoss Anson - Terran Sulla - Protoss

Establishing a baseline

Methodology

- I000 Starcraft 2 replays from pro-gamer
 - Game duration
 - Number of units by players
 - Number of visible cells
 - Number of actions by seconds
- Map playable size:
 - min 15180 cells
 - max 24640 cells

Analysis difficulty

- I. Replays use a proprietary file format (MQP)
 - Wrote a custom parser
- 2. Replay only record players actions
 - Wrote a minimal game engine
 - return an upper-approximation

Game duration

Actions per second

Units by duration

Map cell visible by duration

- Hypergrid: 4 grid instead of I
 - IxIcells
 - 2x2 cells
 - 3x3 cells
 - 4x4 cells
- Lest visible cells
- 4 times more units

- Hypergrid: 4 grid instead of I
 - IxIcells
 - 2x2 cells
 - 3x3 cells
 - 4x4 cells
- Lest visible cells
- 4 times more units

- Hypergrid: 4 grid instead of I
 - IxIcells
 - 2x2 cells
 - 3x3 cells
 - 4x4 cells
- Lest visible cells
- 4 times more units

- Hypergrid: 4 grid instead of I
 - IxIcells
 - 2x2 cells
 - 3x3 cells
 - 4x4 cells
- Lest visible cells
- 4 times more units

- Hypergrid: 4 grid instead of I
 - IxIcells
 - 2x2 cells
 - 3x3 cells
 - 4x4 cells
- Lest visible cells
- 4 times more units

- Hypergrid: 4 grid instead of I
 - IxIcells
 - 2x2 cells
 - 3x3 cells
 - 4x4 cells
- Lest visible cells
- 4 times more units

- Hypergrid: 4 grid instead of I
 - IxIcells
 - 2x2 cells
 - 3x3 cells
 - 4x4 cells
- Lest visible cells
- 4 times more units

Impact of the hypertiled grid

Open-Conflict Benchmark

$ v \downarrow u \rightarrow$	100	200	300	400	500
100	5ms	6ms	8ms	9ms	11ms
200	8ms	9ms	11ms	12ms	14ms
300	11ms	13ms	14ms	16ms	17ms
400	14ms	16ms	17ms	19ms	20ms
500	17ms	19ms	20ms	22ms	24ms

Conclusion

- Developed a generic method to perform memory based attack
- Established a defense performance baseline based on real world data
- Designed and implemented an oblivious set intersection protocol that prevents passive attacks
- Future work: defending on active attacks

Thank you !

Paper and video available from http://ly.tl/p19

Twitter: @elie

Finding units information

When things become harder

- Unit lists are very small
- Visualization won't work this time to find it :(
- Solely based on memory shape analysis algorithms

Stack detection heuristics

- Only one new integer by unit
- Each integer is a valid pointer

Game memory

Game memory

Game memory

Unit Hack shape

🖳 Deref INT0x17E4722C:0x17E47240Space=1		
Step Width << 20 >> 500	Scale << 1 >>> label3	

🖳 Deref INT0x17E4722C:0x17E47240Space=1		
Step Width << 20 >> 500	Scale << 1 >>> label3	

Elie Bursztein, Jocelyn Lagarenne, Mike Hamburg, Dan Boneh

Deref INT0x17E4722C:0x17E47240Space=1		
Step Width << 20 >> 500	Scale << 1 >> label3	

make it move

Deref INT0x17E4722C:0x17E47240Space=1		
Step Width << 20 >> 500	Scale << 1 >>> label3	

make it move

Deref INT0x17E4722C:0x17E47240Space=1	
Step Width << 20 >> 500	Scale << 1 >> label3

make it move

make it move

make it bleed

make it move

make it bleed

Kartograph performance

Game	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5
Supreme Commander 2	176454	13546	428	55	12
Age of empire 3	3443	177	48	29	10

Kartograph performances

Game	Launch	Play	Discover	Play more
Starcraft 2	850	725	2	1.3
C&C Tiberium Sun	75M	73M	400K	400K
C&C Red Alert 2	101M	100M	935K	915K
C&C Red Alert 3	660M	635M	4.4M	1.6M
Age of Empire 3	245M	243M	2.7M	2.5M
Supreme Commander 2	1.2G	629M	2.5M	1.5M
Civilization IV + ext	340M	293M	2M	1.9M
Anno 1701	432M	413M	1.9M	1.8M
Warcraft 3	129M	124M	1.9M	1.8M

Network based maphack

Rewriting network traffic

Administrator: C:\Windows\System32\cmd.exe - instlsp64.exe -p

```
    Resync the game or get 
caught
```

 Use LSP (Layer service provider) to rewrite network traffic

```
Winsock 32-bit Gatalog:

2620 - vlspListener over [RSUP TCP Service Provider]

2621 - vlspListener over [MSAFD Tcpip [TCP/IP]]

2622 - vlspListener over [MSAFD Tcpip [RAW/IP]]

2623 - vlspListener over [MSAFD Tcpip [RAW/IP]]

2624 - vlspListener over [MSAFD Tcpip [RAW/IP6]]

2625 - vlspListener over [MSAFD Tcpip [RAW/IP6]]

2626 - vlspListener over [MSAFD Tcpip [RAW/IP6]]

2627 - vlspListener over [RSUP TCPv6 Service Provider]

2628 - vlspListener over [RSUP UDPv6 Service Provider]

2639 - vlspListener over [RSUP UDPv6 Service Provider]

2630 - vlspListener over [MSAFD Pgm (RDM)]

2631 - vlspListener over [MSAFD Pgm (RDM)]

2632 - vlspListener over [UMCI sockets DGRAM]

2633 - vlspListener over [UMCI sockets STREAM]

1008 - RSUP TCP Service Provider

1001 - MSAFD Tcpip [TCP/IP]

1002 - MSAFD Tcpip [TCP/IP]

1003 - MSAFD Tcpip [RAW/IPJ]

1006 - MSAFD Tcpip [RAW/IPJ]

1006 - MSAFD Tcpip [RAW/IP6]

1007 - RSUP UDPv6 Service Provider

1009 - RSUP UDPv6 Service Provider

1010 - RSAFD Tcpip [RAW/IP6]

1029 - RSUP UDPv6 Service Provider

1011 - MSAFD Pgm (RDM)

1012 - MSAFD Pgm (Stream)

1013 - MSAFD Pgm (Stream)

1014 - MSAFD Pgm (Stream)

1015 - MSAFD Pgm (Stream)

1019 - UMCI sockets DGRAM

1020 - UMCI sockets STREAM

2635 - vlspListener

Press any key to continue...
```

C:\svn\project\lsp\trunk\lsp\bin>instlsp64.exe -p

Civilization 4 vizualization

Civilization 4 vizualization

	Scale	« III »
	* Sze	
	Atter Size Vea	

	ngth
	Len
Scale	

Trace diff map —	
et visualization	
Name Offset Type Match Action To Size	
Record Stop Clear Before Atter Size Recorded Isolate Count unchanged Vaualize Name Size Vaualize Size:11 561 Isolate 6 (o o) Size:37 1965 Isolate 26 (o o) Size:10 19 Isolate 10 (o o) Size:23 2 Isolate 25 (o o) Size:5 17 Isolate 5 (o o) (o o) (o o) (o o)	
	Length

Fixed value Bucket visualization Counter value		
Recr Rec Ater Strene Rec Ater Recr Rec Ater Strene Recr Ater Strene Rec Ater Strene	Length	

