

Hybrid Post-Quantum Signatures in Hardware Security Keys

Fabian Kaczmarczyck kaczmarczyck@google.com

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl, Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein

Google

Team and Contributors

Diana Ghinea

Fabian Kaczmarczyck

Jennifer Pullman

Julien Cretin

Stefan Kölbl

Rafael Misoczki

Jean-Michel Picod

Luca Invernizzi

Elie Bursztein

Google

Security keys: The most secure two-factor authentication

Not all 2FA technologies are equal

Quantum computers and attacks are coming

Why Now?

Users will need new security keys

Most security keys are not upgradable

Web infrastructure needs to be updated

Rolling out of new cryptography to the whole web takes time

User credentials must be recreated

After roll out all users need to re-register on each service

The first open source security key with a post-quantum hybrid signature scheme

Agenda

- • • • •
- · · · · · · ·
- • • •
- • • •
-
-
-
-
- • • •
-
-

FIDO Protocol

Hybrid Signature Scheme

Security Key Implementation

Evaluation

FIDO Overview

* wrapped private key

Hybrid Signature Scheme

What is a combiner?

A hybrid signature scheme, consisting of classical and quantum-secure algorithms.

Google

When is Hybrid Useful?

Classical is still secure...

No cryptographically relevant quantum computers yet

Classical signatures withstand classical computers

... and necessary

3

2

Classical computers might break PQC

i.e. see recent attack on Rainbow [Beullens]

Goal: Maintain the security of both underlying schemes!

Simple Combiner

Strong Nesting

.

Security Key Implementation

Can we meet PQC resource requirements?

PQC Algorithm Options

Hardware & CTAP Requirements

Hardware & CTAP Requirements

		Public key /		
	Memory	Signature	Private key	Signing speed
Limit	64 kB	7609 B	<< 7609 B	<< 10 s

Desktop Benchmarks (NIST)

Importance

	Memory	Public key / Signature	Private key	Signing speed
Limit	64 kB	7609 B	<< 7609 B	<< 10 s
Dilithium5	> 128 kB 🚽	2592 B / 4595 B	4864 B	13k sign / s 🕤
Falcon1024	40 kB	1793 B / 1233 B	2305 B	3k sign / s

for embedded

Binary size Memory

Many possible trade-offs

Speed Benchmark

Google

Speed Benchmark

Google

Implementation Comparison

	This work	Bos et al.
OS	TockOS	None
Language	Rust	С
Configuration	Flexible	Memory optimized
Source	Open	Closed

.

. . .

. .

Signing Usability

Long-tail distribution

.

Signing Usability

Hybrid signing	<1s	< 2 s	< 10 s	Mean
Dilithium2 (no recompute)	85%	98%	100%	0.7 s
Dilithium2	43%	80%	100%	1.4 s
Dilithium3	20%	54%	99%	2.4 s
Dilithium5	0%	31%	98%	3.4 s

.

.

.

.

.

• • •

.

. . .

• •

. .

. .

. . .

. .

• •

• • •

•

•

Dilithium is usable, but slow. Good UX needs hardware acceleration.

Try our open source research framework:

github.com/google/OpenSK

Tag for this work: hybrid-pqc

