
Hybrid Post-Quantum Signatures in Hardware
Security Keys

Diana Ghinea1,2, Fabian Kaczmarczyck2, Jennifer Pullman2, Julien Cretin2,
Stefan Kölbl2, Rafael Misoczki2, Jean-Michel Picod2, Luca Invernizzi2, Elie

Bursztein2

1 ETH ghinead@ethz.ch
2 Google {dianamin,kaczmarczyck,jpullman,cretin,kste,rafaelmisoczki,jmichel,

invernizzi,elieb}@google.com

Abstract. Recent advances in quantum computing are increasingly jeopardizing the
security of cryptosystems currently in widespread use, such as RSA or elliptic-curve
signatures. To address this threat, researchers and standardization institutes have
accelerated the transition to quantum-resistant cryptosystems, collectively known as
Post-Quantum Cryptography (PQC). These PQC schemes present new challenges
due to their larger memory and computational footprints and their higher chance of
latent vulnerabilities.
In this work, we address these challenges by introducing a scheme to upgrade the
digital signatures used by security keys to PQC, focusing on both its theoretical and
practical aspects. Specifically, we introduce a hybrid digital signature scheme based
on two building blocks: a classically-secure scheme, ECDSA, and a post-quantum
secure one, Dilithium. Our hybrid scheme maintains the guarantees of each underlying
building block even if the other one is broken, thus being resistant to classical and
quantum attacks. Additionally, our hybrid scheme ensures that an adversary cannot
derive ECDSA or Dilithium signatures that this authentication protocol considers
valid. On the practical aspect, we experimentally show that our hybrid signature
scheme can successfully execute on current security keys, even though secure PQC
schemes are known to require substantial resources.
We publish an open-source implementation of our scheme at http://anonymous.
4open.science/r/OpenSK-D018/1 so that other researchers can reproduce our results
on a nRF52840 development kit.
Keywords: No keywords given.

1 Introduction
Recent advances in quantum computing are increasingly jeopardizing the security of
cryptosystems currently in widespread use, such as RSA [42] and DSA [26]. For example,
even the comparatively-newer ECDSA, based on elliptic curve cryptography [25], is
vulnerable to quantum attacks (i.e., attacks that leverage quantum computers).

This common vulnerability stems from the shared mathematical problems that all
these cryptosystems rely upon: factorization2 and discrete logarithms3. These problems
are currently considered to be computationally hard for a classical computer but are not
quite as impractical for a quantum one: for example, Shor proposed an algorithm to solve
factorization and discrete logarithms efficiently in 1994 [43, 39, 44].

1The code will be available on Github after acceptance. The code has been anonymized for this review.
2Given N = p · q where p < q, p ≈ q, find p, q.
3Given p, g, gx mod p find x

mailto:ghinead@ethz.ch
mailto:dianamin@google.com, kaczmarczyck@google.com, jpullman@google.com, cretin@google.com, kste@google.com, rafaelmisoczki@google.com, jmichel@google.com, invernizzi@google.com, elieb@google.com
mailto:dianamin@google.com, kaczmarczyck@google.com, jpullman@google.com, cretin@google.com, kste@google.com, rafaelmisoczki@google.com, jmichel@google.com, invernizzi@google.com, elieb@google.com
http://anonymous.4open.science/r/OpenSK-D018/
http://anonymous.4open.science/r/OpenSK-D018/

2 Hybrid Post-Quantum Signatures in Hardware Security Keys

Whereas quantum attacks have been purely theoretical, multiple research groups are
racing to close the gap between theory and practice. For example, in 2019 Google claimed
to have achieved quantum supremacy by performing a calculation on a quantum computer
that would have taken a classical computer 10,000 years to complete [2], though this
is contested [5]. Due to this race, the United States National Institute of Science and
Technology (NIST) stated that quantum computing “is a serious long-term threat to the
cryptosystems currently standardized by NIST” [13].

given an estimated time frame for the end of this race, stating that it expects RSA-based
cryptosystems to be broken in a matter of hours by 2030 [13].

To address this threat, researchers and standardization institutes have accelerated the
transition to quantum-attack-resistant cryptosystems, collectively known as Post-Quantum
Cryptography (PQC). These PQC schemes rely on a new set of underlying hard problems,
e.g. using lattices, that researchers believe to be impervious to quantum attacks. However,
these schemes present new challenges due to their substantial memory and computational
footprints and their higher chance of latent vulnerabilities due to the schemes’ novelty.
To mitigate the potential damage, researchers are pursuing hybrid signature schemes [7],
which maintain the classical scheme’s security against classical attackers, even if researchers
find holes in the less-vetted PQC scheme, and vice versa.

Proposing new schemes is a necessary step to disarm the threat that quantum computing
poses to cryptosystems in widespread use, but it is not enough. Extensive adoption of
these schemes must quickly follow. Among the plethora of protocols that need upgrading
to PQC, one class that stands out is security-key-based authentication protocols, such as
FIDO’s CTAP and WebAuthn [20, 27]. Through these protocols, a user can prove their
identity with a hardware token (commonly called a security key), either as a second-factor
authentication or a first-factor (i.e., passwordless authentication).

In this work, we address these challenges by introducing a PQC digital signature scheme
to be used by security keys, focusing on both the theoretical and practical aspects of this
scheme. Specifically, we introduce a hybrid digital-signature scheme based on two building
blocks: a classically-secure scheme, ECDSA, and a post-quantum secure one, Dilithium.
We picked Dilithium [17] as it is one of the schemes recently selected by NIST [34] as the
PQC standard for digital signature schemes and because of its fast signing speed. Fast
signing is important for our use case since signing is the most frequent operation executed
during normal usage of a security key.

Our hybrid scheme maintains the guarantees of each underlying scheme even if the
other one is broken, thus being resistant to classical and quantum attacks. In addition,
our hybrid scheme offers an additional layer of security by ensuring that an adversary
cannot derive stand-alone ECDSA or Dilithium signatures that this authentication protocol
considers valid.

On the practical aspect, we show that our hybrid signature scheme can be exe-
cuted by current security keys, even though secure PQC schemes require substantial
resources. In contrast, commercial security keys have little to offer regarding their
computational and memory capabilities. Specifically, we implement our hybrid scheme
in OpenSK [37], a popular open-source firmware for security keys written in Rust.
We provide our implementation as open-source software with an Apache2 license at
http://anonymous.4open.science/r/OpenSK-D018/.

Our contributions are as follows:

• We improve the security of a previously proposed hybrid signature scheme [7] in the
context of security key authentication. On top of maintaining the security guarantees
of the underlying classical and post-quantum secure schemes, we provide an additional
layer of security tailored for potential downgrade attacks in authentication protocols.

• We release an implementation of our hybrid scheme with ECDSA and Dilithium as
underlying components. We have implemented this scheme in Rust on top of the

http://anonymous.4open.science/r/OpenSK-D018/

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl,
Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein 3

security-key firmware OpenSK. To allow deployment on diverse hardware, we do not
take advantage of any hardware-specific acceleration and we ensure that the memory
footprint of our hybrid scheme fits in 64 kB of RAM. This requirement leads us to
reduce Dilithium’s memory footprint under the same constraint.

1.1 Related Work
Hybrid Cryptosystems. For the transition period to prevalent quantum computers, hybrid
cryptosystems provide security against future quantum attackers, while mitigating potential
design or implementation bugs in the face of classical attackers. Designing hybrid solutions
has been an important line of research for multiple cryptosystems in use today, such as
authenticated key exchange [16, 3], public-key encryption [31], and digital signatures [7].

In terms of hybrid signature scheme design, the work of Bindel et al. [7] is the most
similar to ours. The main difference between our work and [7] is that we also explore the
practical considerations of implementing hybrid signature schemes under the constraints of
embedded hardware. In addition, we refine the non-separability property they introduce,
and we extend it to a more general class of hybrid signature schemes.

Dilithium vs other PQC. Dilithium [17] and Falcon [30] both won NIST’s post-quantum
signature algorithm standardization. We compare the two schemes in Figure 1. As will be
discussed in Section 5, for security keys, we are mainly interested in the signing speed and
the private key size. Signing is the most common operation for security keys, as verification
of its produced signatures is not performed on embedded hardware. The private key size
affects how many credentials can be stored on the security key.

Figure 1: Relative performance of Falcon 512 compared to the reference implementation
of Dilithium3 as the baseline for the security key use case, as reported by Raavi et al. [40]
in Figure 6.

We optimize Dilithium in Section 5 to get closer to Falcon in key sizes. Our im-
plementation maintains competitive signing speeds, while having favorable properties
overall:

• Private key size: We store the 256-bit secret that we use to regenerate the private
key on the fly. Given the amount of entropy we need, this is near-optimal in terms
of required storage.

4 Hybrid Post-Quantum Signatures in Hardware Security Keys

• Public key and signature size: Public keys and signatures have to be small enough for
transmission over USB and NFC. Falcon has 2x smaller public keys and 3x smaller
signatures than Dilithium for comparable security levels. Dilithium is still compatible
with constraints from the CTAP protocol.

• Key generation speed: Dilithium is 100x faster for key generation [23] than Falcon.
That is why we can regenerate private keys on the fly from the stored random seed.

• Memory: Falcon has smaller requirements, but Dilithium can be optimized to fit
embedded devices [8].

Hash-based signatures are another interesting candidate that provide different benefits
over lattice-based signatures, in particular a very small key size. XMSS [12] and LMS [28]
are two stateful hash-based signatures, and while the use case of authentication against a
server generally allows stateful interactions, it still increases protocol and implementation
complexity. In particular, this use case would require state management on the security
key itself. There are stateless hash-based signature schemes like SPHINCS [4], and
SPHINCS+ [5] which has been selected as a standard by NIST. However, these have a
much larger signature size that is infeasible for our use case, and the performance cost of
signing compared to lattice schemes is significantly worse.

Improvements to Dilithium’s performance. Multiple works have focused on improving
Dilithium’s reference implementation [38] in terms of speed, memory footprint, or security
against side-channel attacks. Future Dilithium optimizations will also compliment our own
implementation and improve the user experience on security keys with faster runtimes.

As Dilithium is based on the Fiat Shamir with Aborts framework, the work of Ravi et
al. [41] focuses on early detection of rejected samples, improving the speed of Dilithium’s
signing procedure. Their proposed optimizations are also evaluated on the ARM Cortex-
M4F MCU. Abdulrahman et al. focused on further improvements of Dilithium’s speed on
the ARM Cortex-M4 [1].

Greconici et al. [22] obtain a constant-time Dilithium implementation on the Cortex-
M3, which is necessary for limiting potential side-channel attacks. In addition, they present
different strategies for the signing procedure that allow trading between the stack and flash
memory usage and speed, which can be applied for Cortex-M3 and Cortex-M4. The recent
work of Bos et al. [8] focuses on reducing Dilithium’s memory footprint to less than 9kB.

Migliore et al. [33] analyze Dilithium’s vulnerabilities against side-channels attacks
when implemented on an ARM Cortex-M3 micro-controller, and remove unexpected
leakages through masking.

2 Background
In this section, we introduce the relevant cryptography, describe our use case of security
keys and explain our hardware and firmware stack for embedded development.

2.1 Digital Signatures
We first recall the definition of a digital signature scheme. For our scope, we only consider
signature schemes deployed on classical computers.

Definition 1. (Digital signature scheme) A digital signature scheme Σ is a triple of
polynomial time algorithms (Σ.KeyGen,Σ.Sign,Σ.Verify) such that:

• Σ.KeyGen(1κ) is a probabilistic algorithm that takes the security parameter 1κ as
input and outputs a public verification key pk and a secret signing key sk.

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl,
Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein 5

• Σ.Sign(m, sk) is a probabilistic algorithm that takes a message m and a secret key
sk as inputs and outputs a signature σ.

• Σ.Verify(m,σ, pk) is a deterministic algorithm that takes a message m, a signature
σ and a public key pk as inputs. It outputs true or false, where true means that σ is
accepted as a signature for the message m and public key pk, and false means that
the signature is not accepted.

Digital signature schemes must achieve two properties: correctness and security. Cor-
rectness requires that for every key pair (sk, pk)←$ Σ.KeyGen(1κ), every possible message
m, and any possible σ←$ Σ.Sign(m, sk), it holds that Σ.Verify(m,σ, pk) = true. In terms
of security, there are multiple definitions, and we present the ones relevant for our context
in the subsection below.

The security of digital signatures is often defined through a security game where an
adversary tries to forge a valid signature while interacting with a challenger who holds
the secret key. For the scope of our paper, we are only interested in the transition to
post-quantum digital signatures. That is, we assume that the signature schemes are only
executed on classical computers, hence the adversary (quantum or classical) only interacts
with a classical challenger or signing oracle. We will use the notation C-adversary to refer
to a classical adversary, and Q-adversary to refer to a quantum adversary with classical
access to the signing oracle.

Security guarantees for digital signatures are often defined through the capabilities of
the adversary (i.e. whether it has access to a quantum computer for its local computations,
or whether it can adaptively choose the messages it queries signatures for), and the
constraints regarding the signature the adversary has to forge to win the security game (i.e.
the signed message may be given in advance by the challenger, or may be chosen by the
adversary as long as the message was not already signed by the challenger). We only work
with two security definitions, defined below: EUF-CMA (Existential Unforgeability under
Chosen Message Attacks) and SUF-CMA (Strong Unforgeability under Chosen Message
Attacks).

Definition 2. (EUF-CMA security) We consider the EUF-CMA security game for a
signature scheme Σ, where the adversary A interacts with a challenger C as follows:

1. The challenger obtains a pair of keys (sk, pk)←$ Σ.KeyGen(1κ) and sends pk to A.

2. A may adaptively send a polynomial number (poly(κ), where κ denotes the security
parameter) of queries mi to the challenger C. For each such query, C obtains
σi = Σ.Sign(m, sk) and sends σi to the adversary. Note that A may send query
mi+1 after receiving σi.

3. A may send a message-signature pair (m∗, σ∗). A wins the EUF-CMA security game
if m∗ /∈ {query mi} and Σ.Verify(m∗, σ∗, pk) holds.

We say that Σ is C-EUF-CMA secure if any classical A wins the EUF-CMA security
game with negligible probability (negl(κ)). Similarly, Σ is Q-EUF-CMA secure if any
(possibly quantum) A that interacts with the signing oracle classically wins the EUF-CMA
security game with negligible probability (negl(κ)).

Definition 3. (SUF-CMA security) We consider the SUF-CMA security game for a
signature scheme Σ, where the adversary A interacts with a challenger C as follows:

1. The challenger obtains a pair of keys (sk, pk)←$ Σ.KeyGen(1κ) and sends pk to A.

2. A may adaptively send a polynomial number (poly(κ)) of queriesmi to the challenger
C. For each such query, C obtains σi = Σ.Sign(m, sk) and sends σi to the adversary.
Note that A may send query mi+1 after receiving σi.

6 Hybrid Post-Quantum Signatures in Hardware Security Keys

3. A may send a message-signature pair (m∗, σ∗). A wins the SUF-CMA security game
if (m∗, σ∗) /∈ {(mi, σi) | mi query} and Σ.Verify(m∗, σ∗, pk) holds.

We say that Σ is C-SUF-CMA secure if any classical A wins the SUF-CMA security
game with negligible probability (negl(κ)). Similarly, Σ is Q-SUF-CMA secure if any
(possibly quantum) A that interacts with the signing oracle classically wins the SUF-CMA
security game with negligible probability (negl(κ)).

We recall the security guarantees of the concrete digital signature schemes that we use:

• ECDSA achieves C-EUF-CMA security in the random bijection model [19]. ECDSA’s
security has also been studied in the generic group model [11, 10]. However, the
analysis in the generic group model establishes that ECDSA achieves even C-SUF-
CMA security, while in fact it is trivial to find a new signature for an already signed
message [19].

• Dilithium achieves Q-SUF-CMA security in the quantum random oracle model [24]
(which implies Q-EUF-CMA).

2.2 Post-quantum cryptography
Dilithium is a signature scheme without known weaknesses to quantum computers. Different
parameters sets of Dilithium are called modes and correspond to estimated security levels.
The cryptographic strengths of Dilithium are shown in Table 1. NIST made an attempt to
translate these hardness levels to classical cryptography [35]. While classical and quantum
security levels are hard to directly compare, we add these estimates to the table as an
approximation.

Table 1: Cryptographic strength of Dilithium modes, as of NIST standardization round 3
(see [14], Table 1). Numbers in parenthesis refer to SUF-CMA. The classical equivalent
refers to NIST’s estimation.

Mode LWE Hardness SIS Hardness
(for SUF-CMA) Estimated classical equivalent

Dilithium2 112 112 (110) collision in SHA256
Dilithium3 165 169 (159) key search in AES-192
Dilithium5 229 241 (230) key search in AES-256

2.3 Security Keys
Security keys allow user authentication with digital signatures. They are often implemented
on embedded hardware to protect secret key material from extraction.

FIDO. Fast IDentity Online (FIDO, see [20]) is set of standards to allow online au-
thentication through asymmetric cryptography. This exchange of messages involves two
protocols: the Client to Authenticator Protocol (CTAP, see [15]), which enables the
communication between the user’s Authenticator and their Client (such as their browser, or
their computer), and WebAuthn, which ensures the communication between the client and
the server (Relying Party). Security keys act as authenticators and therefore implement
CTAP.

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl,
Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein 7

CTAP. As part of a CTAP registration, the user generates a key pair, and sends the
public key to the server. For a CTAP authentication, the user then proves possession of
the private key (Credential) being stored on an authenticator. A credential can be stored
in one of two ways: Either it is encrypted and sent to the relying party for storage, or it is
stored locally in flash. We call these cases server-side key and resident key, respectively.

We describe the cryptographic commands in CTAP below (see Figure 2). The CTAP
protocol started with U2F [27], and since then evolved to its current version 2.1. The
most important commands are Make Credential for registration and Get Assertion for
authentication. Depending on usage of server-side or resident credentials, these commands
use the following cryptographic operations:

R1) During registration, the security key generates a key pair.

R2) Registration returns the public key of the credential, and may return the encrypted
private key (server-side key).

R3) Registration returns the public key of the credential, and may store the private key
on flash (resident key).

A1) Authentication returns a signature over a response derived from the Relying Party’s
message.

A2) Authentication returns a signature, and may return an encrypted private key (server-
side vs resident key).

(a)

Figure 2: Cryptographic operations in the CTAP protocol.

3 Attacker model
Security keys’ main goal is to defend against remote attackers and phishing. Defense
against local attackers with physical possession of the device are an explicit non-goal.
Attackers can attack the protocol on different levels: cryptographically, on CTAP level,
or against the hardware device. In our cryptography analysis in Section 4, we consider
different extended capabilities for attackers:

8 Hybrid Post-Quantum Signatures in Hardware Security Keys

• Possession of a Cryptographically-Relevant Quantum Computer;

• Knowledge of a Dilithium weakness;

• Downgrade of the cryptographic protocol.

We acknowledge that FIDO’s protocols mitigate downgrading the protocol already.
They transmit the used algorithm over a channel that is considered secure in their
attacker model. On the other hand, real-life adversaries are often able to find and exploit
vulnerabilities in implementations. Therefore, we consider it good cryptographic design to
consider this attacker capability regardless and to enhance the guarantees of the hardware
security key accordingly.

Cryptographic strength. We want our implementation to support all modes of Dilithium,
to allow applications with strong security requirements. In particular, security keys are an
important line of defense against account hijacking.

Non-goals. Local attacks against the hardware itself or faulty implementations are out
of scope for this work. That includes local side-channel attacks. Indeed, Dilithium has
been successfully attacked locally on e.g. the power side-channel [32]. We follow FIDO’s
security assumptions, listed in their Security Reference [21]. The two most important for
our threat model are the following:

SA-3 Applications on the user device are able to establish secure channels
that provide trustworthy server authentication, and confidentiality and
integrity for messages (e.g., through TLS).

SA-4 The computing environment on the FIDO user device and the applications
involved in a FIDO operation act as trustworthy agents of the user.

As mentioned above, this generally makes downgrade attacks impossible. However,
the Security Reference mentions hardening against “Protocol level real-time MITM at-
tack”, motivating our mitigations against hybrid signature downgradability as described
in Section 4.2.

4 Hybrid Signatures
A hybrid signature scheme combines a classical signature algorithm with a post-quantum
secure signature algorithm. Before discussing the design of our hybrid scheme, we explain
why such an approach is relevant instead of simply replacing classically secure schemes
with post-quantum secure schemes. We present the assumptions below:

1. Cryptographically-Relevant Quantum Computers (i.e. with enough qubits to break
ECDSA) are not available yet.

2. Classical signature algorithms withstands attacks from classical computers.

3. The post-quantum secure signature algorithm might be breakable by classical com-
puters due to design or implementation bugs.

If any of these assumptions fails, using a hybrid approach instead of replacing classical
schemes with post-quantum schemes indeed does not add any security. We believe that all
of these assumptions are currently correct. The third assumption is motivated by a newly
discovered attack against Rainbow [6], one of the NIST standardization finalists.

We can now discuss the informal requirements a hybrid scheme H should satisfy:

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl,
Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein 9

1. If a quantum computer becomes available, and hence H’s underlying classical scheme
is broken, H should maintain the security of its underlying post-quantum scheme.

2. If a classical attack for H’s underlying post-quantum secure scheme is discovered, H
should maintain the security of its underlying classical scheme.

There are multiple natural options for designing a hybrid scheme that satisfies such
guarantees. An example is obtaining a hybrid signature by concatenating a classical
signature with a post-quantum secure signature. Although simple, this approach indeed
maintains existential unforgeability of the underlying schemes [7].

On the other hand, for our concrete instantiation, Dilithium is strongly unforgeable,
while ECDSA is existentially but not strongly unforgeable [19]. Concatenation unfortu-
nately would not maintain Dilithium’s strong unforgeability: one could simply replace the
ECDSA part of the hybrid signature with another valid ECDSA signature.

Intuitively, this issue can be solved by first signing a given message m with the X-EUF-
CMA secure scheme, obtaining σ1, and afterwards obtaining σ2 by signing (m,σ1) with
the X-SUF-CMA secure scheme. The hybrid signature for the message m is σ = (σ1, σ2).
This approach is called Strong Nesting [7] and is the basis of our hybrid scheme.

Replacing ECDSA with Ed25519 is another possible fix, as the latter is strongly
unforgeable [9]. However, as all security keys already implement ECDSA, a hybrid protocol
that uses ECDSA benefits from code reuse.

Strong Nesting still has a potential caveat. As mentioned in [7], it leaks valid signatures
for one of its underlying schemes from the hybrid counterpart. This could pose an issue in
our concrete use case of the hybrid scheme: in theory, an adversary performing a man-in-
the-middle attack between the client and the relying party could intercept the hybrid public
keys and signatures sent by the client to the relying party, and only forward the ECDSA
components instead. This way, the user would authenticate through a classically secure
scheme, while believing they would be using a post-quantum secure scheme. Although
CTAP offers protection against such downgrade attacks, we would like our hybrid scheme to
offer an additional layer of security. Therefore, we add the following informal requirements:

3. It should be difficult for a classical adversary to derive valid classical components of
the hybrid signature that are relevant for CTAP.

4. It should be difficult for a quantum adversary to derive valid post-quantum compo-
nents of the hybrid signature that are relevant for CTAP.

To obtain this additional layer of security, we build upon the non-separability property
introduced in [7], which roughly prevents an adversary from deriving components of the
hybrid signature (partial signatures) that could pass as valid signature coming from one
of the underlying schemes. We formally define this property in Section 4.2. We mention
that preventing an adversary from deriving such components is impossible as long as the
hybrid scheme’s verification algorithm explicitly uses the underlying scheme’s verification
algorithm. Fortunately, we can prevent the adversary from deriving partial signatures for
messages that are useful in CTAP.

We make use of the suggestion of Bindel et al. [7] of prepending a label to the message
to be signed. This additions restricts an adversary from trivially deriving partial signatures
for messages that have the chosen label as a prefix, if the underlying schemes are secure.

In order to choose the right label, we note that messages in CTAP follow a strict format:
each relying party RP with identifier idRP requests signatures for messages with prefix
SHA256(idRP). Then, for our scope, it is enough to prevent the adversary from deriving
messages whose first 32 bytes represent the hashed identifier of some relying party. We
choose a 32 B label label uniformly at random from SHA256’s output space {0, 1}256,
meaning that an adversary would only be able to use a derived signature in CTAP if
the relying party it interacts with has SHA256(idRP) = label. To find a relying party

10 Hybrid Post-Quantum Signatures in Hardware Security Keys

identifier that hashes to our label, an attacker would need to generate a SHA256 preimage,
while SHA256 is believed to be hard to invert.

We only generate the label once and then we treat it as a constant; it is hardcoded in
every implementation of our scheme. That is, the label is the same for every party using
the scheme. As an alternative construction with the same properties, one could chose a
random label during key generation and store it in both the secret and public key. We
decided to use the constant label approach because it leads to smaller key size.

We can now formally present our hybrid signature scheme. Given two signature schemes
Σ1 and Σ2, we define the secret and public keys as pairs of their counterparts in the given
underlying schemes. Below we present the pseudocode of the KeyGen() function.

H(Σ1,Σ2).KeyGen(1κ)

sk1, pk1 ←$ Σ1.KeyGen(1κ)
sk2, pk2 ←$ Σ2.KeyGen(1κ)
return sk = (sk1, sk2), pk = (pk1, pk2)

When signing a message m, the signer first obtains m′ by prepending the hardcoded
label to the message m. Then, it obtains a Σ1-signature for m′, followed by a Σ2-signature
for (m′, σ1). The hybrid signature is then the pair (σ1, σ2). In practice, these pairs can be
implemented as a simple concatenation if σ1 has predictable length, or a concatenation
with a separator. The pseudocode of the signing and verifying functions is presented below.

H(Σ1,Σ2).Sign(m, sk = (sk1, sk2))

m′ = label‖m
σ1 ← Σ1.Sign(m′, sk1)
σ2 ← Σ2.Sign((m′, σ1), sk2)
return σ = (σ1, σ2)

H(Σ1,Σ2).Verify(m,σ, pk = (pk1, pk2))

m′ = label‖m
obtain σ1 and σ2 from σ

return (Σ1.Verify(m′, σ1, pk1)∧
Σ2.Verify((m′, σ1), σ2, pk2))

We first show that our proposed hybrid scheme H(Σ1,Σ2) achieves correctness.

Lemma 1. If Σ1 and Σ2 are correct, then H(Σ1,Σ2) is also correct.

Proof. Let
(
sk = (sk1, sk2), pk = (pk1, pk2)

)
denote an arbitrary key pair that can be ob-

tained from H(Σ1,Σ2).Sign(m, sk = (sk1, sk2)) with probability greater than zero.
Let m denote an arbitrary message, and let σ = (σ1, σ2) denote an arbitrary sig-

nature that H(Σ1,Σ2).Sign(m, sk) can output with non-zero probability. Since σ1 is
a Σ1-signature obtained by signing label‖m using sk1 and Σ1 achieves correctness,
Σ1.Verify(label‖m,σ1, pk1) holds. Similarly, Σ2.Verify((label‖m,σ1), σ2, pk2)) holds.
Hence, the H(Σ1,Σ2).Verify(m,σ, pk) = true, which means that our hybrid scheme is
correct.

4.1 Security Analysis
In this subsection, we show that our hybrid scheme H(Σ1,Σ2) maintains the security
guarantees of its underlying components. In the statements, we use X ∈ {C,Q} to specify
whether we consider classical or post-quantum security. As our formal proofs only employ
standard techniques, we include them in the appendix for completeness.

Lemma 2. If Σ1 is X-EUF-CMA secure, then H(Σ1,Σ2) is X-EUF-CMA secure as well.

Proof Sketch. If an X-adversary A wins the X-EUF-CMA security game for H(Σ1,Σ2),
then it outputs a pair (m∗, (σ∗1 , σ∗2)) such that: it has never queried a signature for the
message m∗, σ∗1 is a valid Σ1-signature for label‖m∗, and σ∗2 is a valid Σ2-signature for

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl,
Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein 11

(label‖m∗, σ∗1). Therefore, A has to produce a Σ1-signature, and hence one can use A to
create an adversary that breaks Σ1’s X-EUF-CMA security.

Lemma 3. If Σ2 is X-EUF-CMA secure (resp. X-SUF-CMA) secure, H(Σ1,Σ2) is
X-EUF-CMA secure (resp. X-SUF-CMA) as well.

Proof Sketch. Similarly to the previous proof sketch, if an X-adversary A wins the X-
EUF-CMA for H(Σ1,Σ2), then it outputs a pair (m∗, (σ∗1 , σ∗2)) such that: it has never
queried a signature for the message m∗, σ∗1 is a valid Σ1-signature for label‖m∗, and σ∗2
is a valid Σ2-signature for (label‖m∗, σ∗1).

Using A, one can construct an adversary B that wins the X-EUF-CMA security game of
Σ2 with at least the same success probability as A. Then, as Σ2 is existentially unforgeable,
this implies that the success probability of any A for H(Σ1,Σ2) is negligible, and hence
H(Σ1,Σ2) is also existentially unforgeable.

For X-SUF-CMA security, we need to take into account the fact that A might have
obtained a new signature (σ∗1 , σ∗2) for a previously queried m∗. We need to show how B can
derive its own forgery for Σ2’sX-SUF-CMA security game in this case, since the argument is
otherwise identical. For each query mi sent by A, B obtains a Σ1-signature for label‖mi

by itself, denoted by σ1,i, and sends (label‖mi, σ1,i) to its challenger to obtain the
corresponding Σ2-signature σ2,i. If there is some query such that

(
(label‖mi, σ1,i), σ2,i

)
=(

(label‖m∗, σ∗1), σ∗2
)
, then mi = m∗, σ1,i = σ∗1 , and σ2,i = σ∗2 , which means that A’s

forgery was not successful. Hence,
(
(label‖m∗, σ∗1), σ∗2

)
is a successful forgery for B.

4.2 Non-Separability
Our hybrid scheme H(Σ1,Σ2) offers an additional layer of security for downgrade attacks.
To achieve this, we build upon the non-separability property introduced in [7], which
intuitively prevents an adversary from obtaining valid and useful Σt-signatures (for a
chosen t ∈ {1, 2}) from a hybrid scheme H(Σ1,Σ2).

Firstly, we explain the term valid. The work of Bindel et al. considers hybrid schemes
in which a single pair of Σt-keys is obtained, namely in the key generation algorithm.
Naturally, the adversary is expected not to be able to derive useful message-signature pairs
valid with respect to these Σt-keys. We extend the definition for a more general class of
hybrid schemes, in which Σt-keys may be generated in the hybrid key generation and/or
when signing (similarly to constructions based on one-time signatures [18]). The adversary
is expected not to derive meaningful message-signature pairs that can be verified using
any Σt-public key generated by the signer at any time.

Secondly, we explain the term useful. As mentioned previously, it is impossible to
prevent the adversary from obtaining valid Σt components from the hybrid scheme if
the verification algorithm of the hybrid scheme uses Σt’s verification algorithm explicitly.
In this case, non-separability can only prevent the adversary from obtaining useful Σt

components. The term useful depends strongly on the context and is defined with respect
to a set of messages U ⊆ MΣt , whereMΣt denotes the message space of the signature
scheme Σt. The set U becomes a parameter of the non-separability property: informally,
non-separability with respect to U prevents an adversary from deriving Σt-signatures
for messages m ∈ U from the hybrid scheme, and this property is useful if the messages
in MΣt

\ U are meaningless for the practical context. For our scope, we will define
Ulabel := {m | m does not have prefix label}, as the probability that a message with
prefix label needs to be signed in the context of CTAP is small.

We stress that non-separability only refers to one of the hybrid scheme’s underlying
schemes: a hybrid scheme H(Σ1,Σ2) can guarantee that it is difficult for an adversary to
derive useful signatures for Σ1, while it might be easy to derive useful Σ2 components of

12 Hybrid Post-Quantum Signatures in Hardware Security Keys

the signature. Hence, in addition to the useful set of messages U , the definition is also
parametrized by t ∈ {1, 2}, denoting the index of the underlying signature scheme that
should be hard to separate, and X ∈ {C,Q}, denoting the type of adversary for whom it
should be difficult to obtain partial Σt-signatures.

Then, given t ∈ {1, 2}, X ∈ {C,Q} and U , we define (t,X,U)-non-separability property
for a hybrid scheme H(Σ1,Σ2) as follows:

Definition 4. ((t,X,U)-Non-separability) We consider the (t,X,U)-non-separability se-
curity game for H(Σ1,Σ2), where an X-adversary A interacts with a challenger Ct as
follows:

1. Ct generates a pair of keys (sk, pk)←$H(Σ1,Σ2).KeyGen(1κ). CΣ saves any Σt-public
keys obtained in the key generation algorithm in a set Pt. Then, Ct sends pk to A.

2. A may send a polynomial number (poly(κ)) of message queries mi to Ct adaptively.
For each query mi, Ct computes the signature σi←$H(Σ1,Σ2).Sign(mi, sk) and
saves the Σt-public keys generated by the signature algorithm in a set Pmi . Then,
Ct sets Pt := Pt ∪ Pmi

and sends (σi,Pmi
) to A.

3. At some point, A sends a tuple (m∗, σ∗, pk∗) to Ct.

A wins the game if each of the following conditions holds:

• the public key was used in the hybrid signature at some point in the game: pk∗ ∈ Pt;

• the signature is valid: Σt.Verify(m∗, σ∗, pk∗) = true;

• the message is useful: m∗ ∈ U .

Then, H(Σ1,Σ2) is (t,X,U)-non-separable if any X-adversary wins the (t,X,U)-non-
separability security game with probability negligible in the security parameter κ.

The results below show that our hybrid scheme H(Σ1,Σ2) guarantees non-separability
for both Σ1 and Σ2 as long as the two underlying schemes provide security. Similarly
to the previous results, our statements use X ∈ {C,Q} to specify whether we consider
classical or post-quantum security. The formal proofs are included in the appendix.

Lemma 4. Let Ulabel denote the set {m | m does not have prefix label}. If Σ1 is X-
EUF-CMA secure, H(Σ1,Σ2) is (1, X,Ulabel)-non-separable.

Proof Sketch. Since H(Σ1,Σ2) prepends label to any given message m before signing it
using Σ1, an X-adversary A only observes Σ1-signatures for messages that are not in
Ulabel, hence have prefix label, while it has to output a valid Σ1 signature for a message
m that does not have the prefix label.

One can then use A to construct an adversary B for Σ1’s X-EUF-CMA security game
that simulates the non-separability game perfectly towards A, and wins at least with the
same success probability as A. The winning probability is maintained as whenever A
outputs a successful tuple (m∗, σ∗1 , pk∗), B can simply forward (m∗, σ∗1) to its challenger
and win as well since B only needs to query signatures for messages with the prefix label.

Then, as Σ1 is X-EUF-CMA secure, the success probability of every X-adversary in
Σ1’s X-EUF-CMA security game is negligible, hence every X-adversary has negligible
success probability in winning the (1, X,Ulabel)-non-separability game for H(Σ1,Σ2).

As the lemma below can be proven analogously to Lemma 4, we omit the proof sketch.

Lemma 5. Let Ulabel denote the set {m | m does not have prefix label}. If Σ2 is X-
EUF-CMA secure, H(Σ1,Σ2) is (2, X,Ulabel)-non-separable.

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl,
Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein 13

4.3 Final guarantees
The next theorem follows immediately from the lemmas proven in the previous subsections.

Theorem 1. H(Σ1,Σ2) offers the following guarantees:

1. If Σ1 is X-EUF-CMA secure, then H(Σ1,Σ2) is also X-EUF-CMA secure and
(1, X,Ulabel)-non-separable for Ulabel = {m | m does not have prefix label}.

2. If Σ2 is X-EUF-CMA (resp. X-SUF-CMA) secure, then H(Σ1,Σ2) is also X-EUF-
CMA (resp. X-SUF-CMA) secure and (2, X,Ulabel)-non-separable for Ulabel = {m |
m does not have prefix label}.

We recall that ECDSA achieves C-EUF-CMA security in the random bijection model,
while Dilithium achieves Q-SUF-CMA security in the quantum random oracle model, and
we note that our hybrid scheme and proofs use the underlying components as black-boxes.
Then, Theorem 1 shows that our scheme H(ECDSA,Dilithium) at least maintains the
security guarantees of ECDSA and Dilithium (in their corresponding models). In addition,
H(ECDSA,Dilithium) provides an additional layer of security for downgrade attacks, as
it prevents the adversary for deriving ECDSA or Dilithium signatures for messages that
relevant in CTAP.

5 A SK-friendly Implementation
Security keys often run on embedded hardware devices with tight performance constraints.
Our work is based on the open source security key OpenSK [37]. OpenSK is a firmware
that implements CTAP 2.1. It works as an application on top of the embedded operating
system TockOS [29]. For this work, we run OpenSK on a Nordic nRF52840 development
kit [36] with a 64 MHz ARM Cortex-M4F MCU. The nRF52840 comes with a TRNG for
randomness, and we run all CTAP communication over USB.

To support different hardware targets, we want our firmware including Dilithium,
namely the key generation and signing algorithm, to fit 64 kB of RAM. For embedded
hardware, we discuss various trade-offs between speed, memory usage and key sizes. We
describe our changes to Dilithium compared to the reference implementation. We focus
on obtaining a hardware security key-friendly Dilithium implementation for all Dilithium
modes.

5.1 CTAP requirements
Time to login affects usability. In addition, there are some hard limits for FIDO operations
in the specification:

• User presence may timeout after 10 seconds (see 5. Terminology in [15]).

• The size of a CTAP message over USB cannot exceed 7609 B (see 11.2.4. Message
and packet structure in [15]).

Following the command naming from Section 2.3, this yields the following priorities:

R1 ⇒ Key generation must finish in less than 10 s.

R2 ⇒ Key pairs must be smaller than 7 kB.

R3 ⇒ The private key should be small to allow storing additional credentials.

A1 ⇒ The login operation is more frequent than registration. Signing should be as fast
as possible.

14 Hybrid Post-Quantum Signatures in Hardware Security Keys

A2 ⇒ A private key and signature together must be smaller than 7 kB.

For the reference implementation, the Dilithium modes achieving the desired security
requirements (Dilithium3 and Dilithium5) fail some requirements due to the large sizes
of the key pair and signatures. Namely, requirement R3 is broken by Dilithium5, while
requirements R3 and A2 are broken by both Dilithium3 and Dilithium5.

In the following sections, we will achieve these requirements within the memory limits
of embedded hardware. We focus on reducing the private key size significantly. See the
experiments section for speed benchmarks.

5.2 Dilithium Optimizations
Our implementation offers two modes: First, a high speed mode, which follows the original
implementation with the exception that we reduce the key size. Second, a low memory
footprint mode. To reduce Dilithium’s memory footprint, we used some of the tricks from
[8]. We recompute some intermediate values and effectively trade additional computations
(performance) to reduce memory usage.

Both the key generation and the signing algorithm of Dilithium require computations
on vectors and matrices of polynomials stored on the stack memory. Intermediate results
are also stored on the stack memory. The signing algorithm of reference implementation of
Dilithium [38] keeps on stack 49 such polynomials for Dilithium2, 76 for Dilithium3, and
118 for Dilithium5. Each such polynomial requires 1 kB. The secret key and the array of
bytes used to compute the signature are stored on the stack at the same time, which leads
to a stack usage of at least 53 kB for Dilithium2, 83 kB for Dilithium3, and 127 kB for
Dilithium5. In addition, moving the declarations of data structures into scopes, so they
are only stored when necessary, would not make a significant difference: the minimum
stack usage becomes 40 kB, 66 kB, and 133 kB respectively. The reference implementation
of Dilithium is therefore infeasible for our RAM target, since we aim for the security levels
of Dilithium3 and Dilithium5.

Fortunately, the computations on polynomials are done sequentially (polynomial by
polynomial), and not in parallel, which enables us to only store a few polynomials at a
time in the stack memory instead of a significant number of large structures. Sequential
execution is appropriate here since OpenSK does not have parallel execution. In addition,
we take into account the life cycle of variables and we arrange the code into multiple blocks,
such that the polynomials are only stored on the stack when needed, and afterwards the
memory can be recycled.

While using this approach reduces the stack usage, it requires some of the intermediate
results to be recomputed, and hence it increases the runtime significantly.

Discarding information from the secret key. Dilithium’s secret key is an array of bytes
comprising the encoding of an array of polynomials, t0, and the information necessary for
computing the array t0. At a high level, from the secret key, one can derive a matrix of
polynomials, A, and two vectors of polynomials, s1 and s2. The array t0 is obtained by
reducing each coefficient of t = A ·s1 +s2 modulo 2d, where d is a parameter. Then, storing
the encodings of t0 is not necessary. To further decrease Dilithium’s memory footprint, we
can simply recompute these polynomials when signing instead.

Encoding a single polynomial of t0 into the secret key takes 416 B. In the case of
Dilithium2, the encoding of t0 requires 1664 B. For Dilithium3 and Dilithium5, the encoding
requires 2496 B and 3328 B respectively. Then, the size of the secret key gets reduced
significantly: from 2528 B to 864 B in the case of Dilithium2, from 4000 B to 1504 B in
Dilithium3, and from 4864 B to 1536 B in the case of Dilithium5.

Recomputing t0 every time we sign helps us decrease Dilithium’s memory footprint
even more, with the caveat that we need to recompute t0 every time a message is signed.

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl,
Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein 15

Indeed, this change negatively affects the performance of Dilithium, but it remains
reasonable (see experiments in Section 6).

Only storing a 32 B seed. Dilithium’s key generation uses a 32 B seed as source of
randomness, which is then expanded to compute the components of the secret and public
keys. We can store only this seed and recompute the secret key deterministically based on
the stored seed whenever we sign. This adds a small overhead, while saving a significant
amount of storage space. For Dilithium5, we reduce the private key size from 4864 kB to
32 kB. From our benchmarks in Section 6.2, we can see that the speed overhead is 8.2%.

We want to note that discarding information from the secret key during computation
is still useful: we need less stack memory to recompute the vector of polynomials t0 than
to store its encoding.

5.3 CTAP Implementation
We added a new algorithm identifier to indicate support for Hybrid between ECDSA
and Dilithium. When a Relying Party requests a Hybrid credential, we follow the CTAP
procedure as usual. For simplicity, the only change of the encoding of public keys compared
to that in ECDSA is the addition of an extra field with the bytes of the Dilithium public
key. For registration, we wrap Hybrid credentials as described in Table 2.

Table 2: The private keys and Relying Party ID hash are encrypted with AES-256-CBC.
An HMAC-SHA256 of the encrypted data together with the version number is appended.

Bytes Data description
1 Version number
16 Initialization vector for AES-256
32 ECDSA private key as part of the hybrid
32 Seed for Dilithium private key as part of the hybrid
32 Relying Party ID hashed with SHA256
32 HMAC-SHA256 over everything else

During authentication, the signature is computed with H(ECDSA,Dilithium). The
partial ECDSA signature is ASN.1 DER encoded like standard ECDSA signatures in
CTAP.

5.4 Side-channel resilience
As per our attacker model, local attackers are out of scope, and we consider time-based
remote side-channels only. Our Dilithium implementation should not leak information
about its secret key through the computation time as measurable from outside the device.

The paper introducing Dilithium (Section 5.4 in [17]) explains that their implementation
does not leak information about the secret key. Indeed, as Dilithium’s signing algorithm
may attempt to generate multiple signatures until one that satisfies a set of conditions
is found, an adversary can gain information about the number of attempts, or about the
conditions previous attempts did not meet. The reasons why a signature attempt is rejected
do not depend on the secret key, instead they are based on pseudorandom information.
Hence determining which conditions where the reason why a signature attempt was rejected
does not help the adversary derive information about the secret key.

Our modifications to Dilithium indeed change the computation compared to the
reference implementation. However, our implementation still does not branch depending
on the secret data, and hence we maintain the same guarantees.

16 Hybrid Post-Quantum Signatures in Hardware Security Keys

6 Experiments
We benchmark Dilithium on different target architectures, compare the 3 modes, and
evaluate the speed difference of the stack optimized version.

6.1 Dilithium Reference Implementation
Achieving higher security levels demands a higher run time and space usage. Table 3
states the average speed of the Dilithium key generation and signing algorithms over 1000
executions on an x86-64 architecture4, and the size of the keys and the signature.

Table 3: Average run times on an x86-64 architecture and the key and signature sizes of
the reference implementation of Dilithium.

Scheme Avg runtime of
KeyGen (in ms)

Avg runtime of
Sign (in ms)

Size of
secret key
(in bytes)

Size of
public key
(in bytes)

Size of
signature
(in bytes)

Dilithium2 0.08 0.31 2528 1312 2420
Dilithium3 0.15 0.53 4000 1952 3293
Dilithium5 0.22 0.61 4864 2592 4595

6.2 Dilithium Embedded
The changes from Section 5.2 enabled us to execute Dilithium in all modes on the Nordic
nRF52840 development kit [36]. The performance was measured on the device and the
elapsed time printed out via the debugging interface. Table 4 shows the performance we
have obtained. In what we call speed mode, we only apply certain stack optimizations to
Dilithium, but do not perform the expensive recomputations. This selection allows us to
sign messages with Dilithium2, and evaluate the impact of the recomputations directly in
this mode. To measure the computational cost of our hybrid scheme, we ran the equivalent
experiment to the Dilithium benchmarks, but we use the full hybrid scheme.

If not stated otherwise, all binaries are optimized for size. To compare our runtime to
other benchmarks, we also show results compiled for speed in table 5. Note that the code
runs as an application on top of an operating system. Therefore, performance benchmarks
don’t directly compare to other implementations, as some time is spent inside the i.e.
syscalls. For an estimate of our relative performance when compiled for speed, we convert
the measured time to clock cycles by multiple with the processor speed of 32768 kHz.
Those numbers are reported with their relative performance compared to Bos et al. [8].

The binary size of an application running Dilithium on TockOS is 9.3 kB with compiler
optimization level -Oz. This size increases to 26.8 kB using -O3.

We highlight that our Dilithium implementation runs solely on the stack; no heap is
required. This benefits embedded devices that don’t support heap allocation. The memory
footprint was measured with stack painting: Before entering the function that we want to
measure, we write a fixed byte pattern into the unused stack. After the function returns,
we read back the stack to see where the byte pattern was overwritten.

With this method, we can measure the actual stack usage of each function. Therefore,
our reported numbers represent our implementation and depend e.g. on the compiler
version used. This explains why our numbers are higher than reported theoretical optima

4We have used a MacPook Pro (13-inch, 2020), with processor 2.3 GHz Quad-Core Intel Core i7, and
memory 16 GB 3733 MHz LPDDR4X.

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl,
Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein 17

Table 4: We show the performance obtained by our Optimized Stack mode implementation
of Dilithium on the Nordic nRF52840 development kit [36]. The runtime in milliseconds is
averaged over 1000 executions, and the stack usage is measured with stack painting. We
added runtime speed for ECDSA as a baseline, and to explain the difference between pure
Dilithium and Hybrid measurements.

Scheme Stack usage in kB of Runtime (in ms) of Hybrid runtime of
KeyGen Sign KeyGen Sign KeyGen Sign

ECDSA 0.3 3.0 115.7 188.0
Dilithium2

(speed mode) 41.6 77.1 70.3 420.4 192.0 687.8

Dilithium2 14.4 17.0 82.3 1053.1 207.5 1417.5
Dilithium3 19.4 17.9 142.4 2077.3 258.5 2420.7
Dilithium5 21.4 19.2 271.4 3305.1 393.1 3378.5

Table 5: We repeated the Dilithium benchmarks from Table 4 with the compiler optimizing
for speed rather than binary size (-O3 instead of -Oz) to compare them. We also compare
the speed to Bos et al [8] by multiplying our runtimes with our clock frequency.

Scheme Relative to -Oz Runtime (in ms) of Relative to [8]
KeyGen Sign KeyGen Sign KeyGen Sign

ECDSA 0.45 0.39 51.9 73.3
Dilithium2

(speed mode) 0.90 0.86 63.2 363.0 0.71 0.64

Dilithium2 0.88 0.91 72.3 956.1 0.81 1.70
Dilithium3 0.91 0.94 129.5 1955.0 0.83 1.76
Dilithium5 0.82 0.82 223.6 2723.8 0.85 2.01

(see [8]). The stack usage is deterministic and does not depend on the inputs’ concrete
values. Our measurement method also implies that input messages for signing and the
RNG are not counted for its memory usage, but outputs are.

Figure 3 summarizes how Dilithium modes scale, and how our stack optimizations
impact the speed of operations.

Since Dilithium’s signing has a retry loop, its signing speed has a long tail. The
distribution of measurements for our Dilithium5 signing benchmark is shown in Figure 4.
To not cause timeouts, CTAP operations should be faster than 10 seconds. Signing with
Dilithium5 achieves that in 97% of the operations. Key generation is faster and more
predictable, taking 271 ms on average, with 1 ms standard deviation.

6.3 Register and Authenticate Speed
Different from pure cryptography measurements above, the performance measurements
for the CTAP commands MakeCredential and GetAssertion were measured on the USB
host, and include a full message exchange. All measurements use server-side keys (see
Section 5.1). MakeCredential takes 792 ms with 2ms standard deviation. GetAssertion
has the same long-tail timing distribution as signing (see Figure 4).

We simulated 2000 calls to the security key to register and login. MakeCredential calls
took between 786 and 797 milliseconds, whereas GetAssertion has much more variance,

18 Hybrid Post-Quantum Signatures in Hardware Security Keys

Figure 3: Comparison of sizes and speeds of Dilithium modes on embedded hardware. The
reference in white is Dilithium2 without recomputating parts of the key to save memory.
To set the computation speed into perspective, we compare the scaling with the key and
signatures sizes. Note that the shown key sizes are after restoring from the 32 byte seed.

due to its signing retry logic described above (see ??). The time distribution shows that
20% of all calls finish within 2 seconds. On average, a command takes 3.9 seconds to
complete. 97% of all authentication attempts finished within the CTAP timeout of 10
seconds, as stated in our requirements in Section 5.1.

7 Conclusion

In this paper, we proposed a practical way to upgrade security-key authentication via
FIDO’s CTAP to PQC. To do so, we have designed and evaluated a hybrid digital-
signature scheme that combines a classical scheme, ECDSA, with a PQC one, Dilithium.
Incidentally, US NIST has recently selected Dilithium as their PQC recommendation
for digital signatures. This hybrid scheme ensures that the security guarantees of each
underlying scheme are maintained even when one of the scheme becomes insecure.

Our hybrid scheme provides an ulterior layer of security against downgrade attacks, as
generated hybrid signatures cannot be used individually. If one of the underlying schemes
becomes insecure, this ensures that an attacker cannot leverage the weaker scheme as
stand-alone CTAP signature.

To demonstrate the practicality of this scheme, we have implemented it in the open-
source security-key firmware OpenSK, benchmarked its performance, and released our
contribution as open-source software with an Apache2 license. This way, we encourage
other researchers to reproduce our results on a nRF52840 development kit.

Our implementation is designed to overcome the intrinsic resource limitations of current
security key hardware platforms while maintaining reasonable run-times. Our evaluation of
this implementation has demonstrated its feasibility even when using Dilithium’s highest
security mode, which comes with the highest resource requirements.

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl,
Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein 19

(a) The sign operation has a retry loop that
discards insecure parameters. The signing speed
is therefore highly non-deterministic.

(b) GetAssertion commands have a similar long
tail, depending on the number of retries when
signing with Dilithium.

Figure 4: Timing distributions of signing and the CTAP command GetAssertion, using
the Dilithium5 mode.

8 Appendix
8.1 Proofs
We include the formal proofs that were omitted in the main body of the paper.

Lemma 2. If Σ1 is X-EUF-CMA secure, then H(Σ1,Σ2) is X-EUF-CMA secure as well.

Proof. For every X-adversary A that wins the X-EUF-CMA security game for H(Σ1,Σ2)
with probability pA, there is an adversary B that wins Σ1’s X-EUF-CMA security game
with probability pB ≥ pA. B can be constructed as follows:

• B receives the Σ1 public key pk1 from the challenger CΣ1 . B generates its own Σ2
keys (sk2, pk2)←$ Σ2.KeyGen(1κ) and sends pk = (pk1, pk2) to A. Note that the
keys received by A are generated from the same probability distribution as in the
X-EUF-CMA security game of H(Σ1,Σ2).

• When receiving a message query mi from A, B sends its message query m′i :=
label‖mi to CΣ1 and obtains σ1,i = Σ1.Sign(m′i, sk1). Then, B uses its own Σ2
secret key to compute σ2,i←$ Σ2.Sign((m′i, σ1,i), sk2) and sends σi := (σ1,i, σ2,i) to
A. Note that the hybrid signature is valid: H(Σ1,Σ2).Verify(mi, σi, pk) = true.

• When receiving the forgery
(
m∗, σ∗ = (σ∗1 , σ∗2)

)
from A, B obtains its own forgery

(label‖m∗, σ∗1) and sends it to CΣ1 .

Since B simulates the X-EUF-CMA security game for H(Σ1,Σ2) perfectly towards
A, A maintains its success probability pA. Additionally, whenever A wins the simulated
game, B wins the X-EUF-CMA security game for Σ1: A wins if m∗ /∈ {queries mi}
and HSN .Verify(m∗, σ∗, pk) = true, which implies that label‖m∗ /∈ {queries m′i} and
Σ1.Verify(label‖m∗, σ∗1 , pk1) = true. Hence, B wins Σ1’s X-EUF-CMA security game
with probability pB ≥ pA.

Finally, as Σ1 is X-EUF-CMA secure, pB ∈ negl(κ), and therefore pA ∈ negl(κ). Since
A was chosen arbitrarily, we obtain that any X-adversary has negligible probability in
winning H(Σ1,Σ2)’s X-EUF-CMA security game.

Lemma 3. If Σ2 is X-EUF-CMA secure (resp. X-SUF-CMA) secure, H(Σ1,Σ2) is
X-EUF-CMA secure (resp. X-SUF-CMA) as well.

20 Hybrid Post-Quantum Signatures in Hardware Security Keys

Proof. For every X-adversary A that wins the X-EUF-CMA (resp. X-SUF-CMA) security
game for H(Σ1,Σ2) with probability pA, there is an adversary B that wins Σ2’s X-EUF-
CMA (resp. X-SUF-CMA) security game with probability pB ≥ pA. B can be constructed
as follows:

• B receives the Σ2 public key pk2 from the challenger CΣ2 . B generates its own pair
of Σ1 keys (sk1, pk1)←$ Σ1.KeyGen(1κ) and sends pk = (pk1, pk2) to A. Note that
the keys received by A are generated from the same probability distribution as in
H(Σ1,Σ2)’s security game.

• When receiving a message query mi from A, B uses its own secret key sk1 to
compute σ1,i←$ Σ1.Sign(label‖mi, sk1). Then, B sends its message query m′i :=
(label‖mi, σ1) to CΣ2 and obtains σ2,i = Σ2.Sign(m′i, sk2). Finally, B sends the
hybrid signature σi := (σ1,i, σ2,i) to A. Note that σi is a valid hybrid signature:
H(Σ1,Σ2).Verify(mi, σi, pk) = true.

• When receiving the forgery
(
m∗, σ∗ = (σ∗1 , σ∗2)

)
from A, B obtains its own forgery(

(label‖m∗, σ∗1), σ∗2
)
and sends it to CΣ2 .

Since B simulates the X-EUF-CMA (resp. X-SUF-CMA) security game for H perfectly
towards A, A maintains its success probability pA. In addition, whenever A wins the
simulated game, B wins the X-EUF-CMA (resp. X-SUF-CMA) security game for Σ2. If A
wins the simulated X-EUF-CMA security game, then m∗ /∈ {queries mi}. It immediately
follows that label‖m∗ /∈ {queries m′i}. If A wins the simulated X-SUF-CMA security
game, then (m∗, σ∗) /∈ {(mi, σi) | mi query}. If this is the case, if

(
(label‖m∗, σ∗1), σ∗2

)
=

(m′i, σ2,i) for some query m′i, we obtain that (m∗, σ∗) = (mi, σi), which contradicts that
A’s forgery was successful. In both of the cases, H(Σ1,Σ2).Verify(m∗, σ∗, pk) = true must
hold, hence Σ2.Verify((label‖m∗, σ∗1), σ∗2 , pk2) holds as well. It follows that that B wins
the X-EUF-CMA (resp. X-SUF-CMA) security game for Σ2 with probability pB ≥ pA.

Finally, as Σ2 is X-EUF-CMA (resp. X-SUF-CMA) secure, pB ∈ negl(κ), and therefore
pA ∈ negl(κ). SinceA was chosen arbitrarily, we obtain that anyX-adversary has negligible
probability in winning H(Σ1,Σ2)’s X-EUF-CMA (resp. X-SUF-CMA) security game.

Lemma 4. Let Ulabel denote the set {m | m does not have prefix label}. If Σ1 is X-
EUF-CMA secure, H(Σ1,Σ2) is (1, X,Ulabel)-non-separable.

Proof. For every X-adversary A that wins the (1, X,Ulabel)-non-separability security game
for H(Σ1,Σ2) with probability pA, there is an adversary B that wins Σ1’s X-EUF-CMA
security game with probability pB ≥ pA. B can be constructed as follows:

• B receives the Σ1 public key pk1 from the challenger CΣ1 . B generates its own
pair of Σ2 keys (sk2, pk2)←$ Σ2.KeyGen(κ) and sends

(
pk = (pk1, pk2), {pk1}

)
to A.

Note that the public keys received by A are generated from the same probability
distribution as in H(Σ1,Σ2)’s (1, X,Ulabel)-non-separability game.

• When receiving a message query mi from A, B sends its message query m′i :=
label‖mi to CΣ1 and obtains σ1,i = Σ1.Sign(m′i, sk1). Then, B uses its own Σ2
secret key to compute σ2,i←$ Σ2.Sign((m′i, σ1,i), sk2) and sends

(
σi := (σ1,i, σ2,i), ∅

)
to A. Note that the hybrid signature σi is valid: H(Σ1,Σ2).Verify(mi, σ, pk) = true.

• When receiving the forgery (m∗, σ∗, pk∗) from A, B sends its forgery (m∗, σ∗) to CΣ1 .

As B simulates the (1, X,Ulabel)-non-separability game for H(Σ1,Σ2) perfectly towards
A, A maintains its success probability pA in the simulated game.

In addition, whenever A wins the simulated game, B wins Σ1’s X-EUF-CMA security
game: A wins if m∗ ∈ Ulabel, pk∗ ∈ {pk1}, and Σ1.Verify(m∗, σ∗1 , pk∗) = true. If this is

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl,
Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein 21

the case, as each query m′i sent by B to CΣ1 has the prefix label, m∗ /∈ {queries m′i}.
Hence, B outputs a successful forgery with success probability is pB ≥ pA.

Finally, as Σ1 is X-EUF-CMA secure, pB ∈ negl(κ), and therefore pA ∈ negl(κ). Since
A was chosen arbitrarily, we obtain that any X-adversary has negligible probability in
winning H(Σ1,Σ2)’s (1, X,Ulabel)-non-separability security game.

We omit the formal proof of Lemma 5 as it follows the same rationale as the proof of
Lemma 4.

22 Hybrid Post-Quantum Signatures in Hardware Security Keys

References
[1] Amin Abdulrahman, Vincent Hwang, Matthias J. Kannwischer, and Daan Sprenkels.

Faster Kyber and Dilithium on the Cortex-M4. In ACNS, volume 13269 of Lecture
Notes in Computer Science, pages 853–871. Springer, 2022.

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al.
Quantum supremacy using a programmable superconducting processor. Nature,
574(7779):505–510, 2019.

[3] Reza Azarderakhsh, Rami Elkhatib, Brian Koziel, and Brandon Langenberg. Hardware
Deployment of Hybrid PQC: SIKE+ECDH. In International Conference on Security
and Privacy in Communication Systems, pages 475–491. Springer, 2021.

[4] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederha-
gen, Louiza Papachristodoulou, Peter Schwabe, and Zooko Wilcox-O’Hearn. SPHINCS:
Practical Stateless Hash-Based Signatures. IACR Cryptology ePrint Archive, 2014:795,
2014.

[5] Daniel J Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost Rijn-
eveld, and Peter Schwabe. Leveraging Secondary Storage to Simulate Deep 54-qubit
Sycamore Circuits. In Proceedings of the 2019 ACM SIGSAC conference on computer
and communications security, pages 2129–2146, 2019.

[6] Ward Beullens. Improved Cryptanalysis of UOV and Rainbow. In Advances in
Cryptology – EUROCRYPT 2021: 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17–21,
2021, Proceedings, Part I, page 348–373, Berlin, Heidelberg, 2021. Springer-Verlag.

[7] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila. Transitioning
to a Quantum-Resistant Public Key Infrastructure. In Tanja Lange and Tsuyoshi
Takagi, editors, Post-Quantum Cryptography, pages 384–405, Cham, 2017. Springer
International Publishing.

[8] Joppe W Bos, Joost Renes, and Daan Sprenkels. Dilithium for memory constrained
devices. Cryptology ePrint Archive, 2022.

[9] Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. The Provable
Security of Ed25519: Theory and Practice. Cryptology ePrint Archive, Paper 2020/823,
2020. https://eprint.iacr.org/2020/823.

[10] D. Brown. On the Provable Security of ECDSA, page 21–40. London Mathematical
Society Lecture Note Series. Cambridge University Press, 2005.

[11] Daniel Brown. Generic groups, Collision Resistance, and ECDSA. Design, Codes
Cryptography, 35, 03 2002.

[12] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS-A Practical Forward
Secure Signature Scheme based on Minimal Security Assumptions. In International
Workshop on Post-Quantum Cryptography, pages 117–129. Springer, 2011.

[13] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner,
and Daniel Smith-Tone. Report on Post-Quantum Cryptography. Technical report,
National Institute of Standards and Technology, April 2016.

https://eprint.iacr.org/2020/823

Diana Ghinea, Fabian Kaczmarczyck, Jennifer Pullman, Julien Cretin, Stefan Kölbl,
Rafael Misoczki, Jean-Michel Picod, Luca Invernizzi, Elie Bursztein 23

[14] CRYSTALS-Dilithium Algorithm Specifications and Support-
ing Documentation. https://pq-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf. Accessed: 2022-07-08.

[15] Client to Authenticator Protocol (CTAP). https://fidoalliance.org/
specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.
1-ps-20210615.html. Accessed: 2022-04-05.

[16] Dowling, Benjamin, Brandt Hansen, Torben, and Paterson, Kenneth G. Many a
Mickle Makes a Muckle: A Framework for Provably Quantum-Secure Hybrid Key
Exchange. Lecture Notes in Computer Science, 2020.

[17] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A Lattice-Based Digital Signature
Scheme. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2018(1):238–268, Feb. 2018.

[18] Shimon Even, Oded Goldreich, and Silvio Micali. On-Line/Off-Line Digital Signatures.
In Advances in Cryptology (CRYPTO’89), volume 435, pages 263–275, 08 1989.

[19] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the Provable Security of
(EC)DSA Signatures. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page 1651–1662, New York, NY,
USA, 2016. Association for Computing Machinery.

[20] FIDO Alliance. https://fidoalliance.org/. Accessed: 2022-04-05.

[21] FIDO Alliance security reference. https://fidoalliance.org/specs/fido-v2.
0-id-20180227/fido-security-ref-v2.0-id-20180227.html. Accessed: 2022-04-
05.

[22] Denisa OC Greconici, Matthias J Kannwischer, and Daan Sprenkels. Compact
Dilithium Implementations on Cortex-M3 and Cortex-M4. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 1–24, 2021.

[23] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. pqm4:
Testing and benchmarking nist pqc on arm cortex-m4. Cryptology ePrint Archive,
Paper 2019/844, 2019. https://eprint.iacr.org/2019/844.

[24] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A Concrete Treatment
of Fiat-Shamir Signatures in the Quantum Random-Oracle Model. In Advances in
Cryptology – EUROCRYPT 2018, pages 552–586. Springer International Publishing,
2018.

[25] Neal Koblitz. Mathematics of Computation. Elliptic Curve Cryptosystems, 48n,
1(77):l, 1987.

[26] Information Technology Laboratory. Digital Signature Standard (DSS). Technical
report, National Institute of Standards and Technology, July 2013.

[27] Juan Lang, Alexei Czeskis, Dirk Balfanz, and Marius Schilder. Security Keys: Practical
Cryptographic Second Factors for the Modern Web. In Financial Cryptography, 2016.

[28] Frank T Leighton and Silvio Micali. Large provably fast and secure digital signature
schemes based on secure hash functions, July 11 1995. US Patent 5,432,852.

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://eprint.iacr.org/2019/844

24 Hybrid Post-Quantum Signatures in Hardware Security Keys

[29] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. Multiprogramming a 64kB Computer Safely and
Efficiently. In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP’17, pages 234–251, New York, NY, USA, 10 2017. ACM.

[30] Shaohua Li, Kaiping Xue, Chenkai Ding, Xindi Gao, David S. L. Wei, Tao Wan,
and Feng Wu. FALCON: A Fourier Transform Based Approach for Fast and Secure
Convolutional Neural Network Predictions. CoRR, abs/1811.08257, 2018.

[31] Benjamin Lipp. An Analysis of Hybrid Public Key Encryption. Cryptology ePrint
Archive, Paper 2020/243, 2020. https://eprint.iacr.org/2020/243.

[32] Soundes Marzougui, Vincent Ulitzsch, Mehdi Tibouchi, and Jean-Pierre Seifert.
Profiling Side-Channel Attacks on Dilithium: A Small Bit-Fiddling Leak Breaks It
All. Cryptology ePrint Archive, Paper 2022/106, 2022. https://eprint.iacr.org/
2022/106.

[33] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque. Masking
Dilithium. In Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti
Yung, editors, Applied Cryptography and Network Security, pages 344–362, Cham,
2019. Springer International Publishing.

[34] NIST Announces First Four Quantum-Resistant Cryptographic Al-
gorithms. https://www.nist.gov/news-events/news/2022/07/
nist-announces-first-four-quantum-resistant-cryptographic-algorithms.
Accessed: 2022-07-07.

[35] NIST Post-Quantum Cryptography FAQs. https://csrc.nist.gov/Projects/
post-quantum-cryptography/faqs. Accessed: 2022-07-13.

[36] Nordic nrf52840. https://www.nordicsemi.com/Products/
Development-hardware/nrf52840-dk. Accessed: 2022-04-05.

[37] OpenSK. https://github.com/google/OpenSK. Accessed: 2022-04-05.

[38] PQCrystals: Dilithium. https://github.com/pq-crystals/dilithium. Accessed:
2022-06-10.

[39] John Proos and Christof Zalka. Shor’s Discrete Logarithm Quantum Algorithm for
Elliptic Curves. arXiv preprint quant-ph/0301141, 2003.

[40] Manohar Raavi, Simeon Wuthier, Pranav Chandramouli, Yaroslav Balytskyi, Xiaobo
Zhou, and Sang-Yoon Chang. Security Comparisons and Performance Analyses
of Post-quantum Signature Algorithms. In International Conference on Applied
Cryptography and Network Security, pages 424–447. Springer, 2021.

[41] Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, and Shivam Bhasin.
Improving Speed of Dilithium’s Signing Procedure. In International Conference on
Smart Card Research and Advanced Applications, pages 57–73. Springer, 2019.

[42] Ronald L Rivest, Adi Shamir, and Leonard M Adleman. A Method for Obtaining
Digital Signatures and Public Key Cryptosystems. In Secure communications and
asymmetric cryptosystems, pages 217–239. Routledge, 2019.

[43] Peter W Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM review, 41(2):303–332, 1999.

[44] Teik Guan Tan, Pawel Szalachowski, and Jianying Zhou. Challenges of Post-Quantum
Digital Signing in Real-world Applications: A Survey. International Journal of
Information Security, pages 1–16, 2022.

https://eprint.iacr.org/2020/243
https://eprint.iacr.org/2022/106
https://eprint.iacr.org/2022/106
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://github.com/google/OpenSK
https://github.com/pq-crystals/dilithium

	Introduction
	Related Work

	Background
	Digital Signatures
	Post-quantum cryptography
	Security Keys

	Attacker model
	Hybrid Signatures
	Security Analysis
	Non-Separability
	Final guarantees

	A SK-friendly Implementation
	CTAP requirements
	Dilithium Optimizations
	CTAP Implementation
	Side-channel resilience

	Experiments
	Dilithium Reference Implementation
	Dilithium Embedded
	Register and Authenticate Speed

	Conclusion
	Appendix
	Proofs

